Skip to main content

Presburger Arithmetic, Rational Generating Functions, and Quasi-Polynomials

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7966))

Included in the following conference series:

Abstract

A Presburger formula is a Boolean formula with variables in ℕ that can be written using addition, comparison (≤, =, etc.), Boolean operations (and, or, not), and quantifiers (∀ and ∃). We characterize sets that can be defined by a Presburger formula as exactly the sets whose characteristic functions can be represented by rational generating functions; a geometric characterization of such sets is also given. In addition, if p = (p 1,…,p n ) are a subset of the free variables in a Presburger formula, we can define a counting function g(p) to be the number of solutions to the formula, for a given p. We show that every counting function obtained in this way may be represented as, equivalently, either a piecewise quasi-polynomial or a rational generating function. In the full version of this paper, we also translate known computational complexity results into this setting and discuss open directions.

Full version available at http://www.oberlin.edu/faculty/kwoods/papers.html

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barvinok, A.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  3. Barvinok, A.: The complexity of generating functions for integer points in polyhedra and beyond. In: International Congress of Mathematicians, vol. III, pp. 763–787. Eur. Math. Soc., Zürich (2006)

    Google Scholar 

  4. Barvinok, A., Pommersheim, J.: An algorithmic theory of lattice points in polyhedra. In: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–1997). Math. Sci. Res. Inst. Publ., vol. 38, pp. 91–147. Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  5. Barvinok, A., Woods, K.: Short rational generating functions for lattice point problems. J. Amer. Math. Soc. 16(4), 957–979 (2003) (electronic)

    Google Scholar 

  6. Beck, M.: The partial-fractions method for counting solutions to integral linear systems. Discrete Comput. Geom. 32(4), 437–446 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, M., Robins, S.: Computing the continuous discretely. Undergraduate Texts in Mathematics. Springer, New York (2007); Integer-point enumeration in polyhedra

    MATH  Google Scholar 

  8. Berman, L.: The complexity of logical theories. Theoret. Comput. Sci. 11(1), 57, 71–77 (1980); With an introduction “On space, time and alternation”

    Article  MathSciNet  MATH  Google Scholar 

  9. Blanco, V., García-Sánchez, P.A., Puerto, J.: Counting numerical semigroups with short generating functions. Internat. J. Algebra Comput. 21(7), 1217–1235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and finite automata. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 30–43. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Brion, M.: Points entiers dans les polyèdres convexes. Ann. Sci. École Norm. Sup. 4, 653–663 (1988)

    MathSciNet  Google Scholar 

  12. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cassels, J.W.S.: An introduction to the geometry of numbers. Classics in Mathematics. Springer, Berlin (1997); Corrected reprint of the 1971 edition

    MATH  Google Scholar 

  14. Clauss, P., Loechner, V.: Parametric analysis of polyhedral iteration spaces. Journal of VLSI Signal Processing 19(2), 179–194 (1998)

    Article  Google Scholar 

  15. Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3, 186–192 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Cooper, D.: Theorem proving in arithmetic without multiplication. Machine Intelligence 7, 91–99 (1972)

    MATH  Google Scholar 

  18. D’Alessandro, F., Intrigila, B., Varricchio, S.: On some counting problems for semi-linear sets. CoRR abs/0907.3005 (2009)

    Google Scholar 

  19. Davis, M.: Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly 80, 233–269 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. De Loera, J., Haws, D., Hemmecke, R., Huggins, P., Sturmfels, B., Yoshida, R.: Short rational functions for toric algebra. To appear in Journal of Symbolic Computation (2004)

    Google Scholar 

  21. Ehrhart, E.: Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)

    MathSciNet  MATH  Google Scholar 

  22. Fischer, M., Rabin, M.: Super-exponential complexity of Presburger arithmetic. In: Complexity of Computation. SIAM–AMS Proc., vol. VII, pp. 27–41. Amer. Math. Soc., Providence (1974); Proc. SIAM-AMS Sympos., New York (1973)

    Google Scholar 

  23. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  24. Fürer, M.: The complexity of Presburger arithmetic with bounded quantifier alternation depth. Theoret. Comput. Sci. 18(1), 105–111 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grädel, E.: Subclasses of Presburger arithmetic and the polynomial-time hierarchy. Theoret. Comput. Sci. 56(3), 289–301 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, A., Miller, E.: Lattice point methods for combinatorial games. Adv. in Appl. Math. 46(1-4), 363–378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hoşten, S., Sturmfels, B.: Computing the integer programming gap. To appear in Combinatorics (2004)

    Google Scholar 

  29. Kannan, R.: Test sets for integer programs, ∀ ∃ sentences. In: Polyhedral Combinatorics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci, vol. 1, pp. 39–47. Amer. Math. Soc., Providence (1990); Morristown, NJ (1989)

    Google Scholar 

  30. Klaedtke, F.: Bounds on the automata size for Presburger arithmetic. ACM Trans. Comput. Log. 9(2), 34 (2008)

    Article  MathSciNet  Google Scholar 

  31. Lenstra Jr., H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Miller, E., Sturmfels, B.: Combinatorial commutative algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)

    Google Scholar 

  33. Oppen, D.: A superexponential upper bound on the complexity of Presburger arithmetic. J. Comput. System Sci. 16(3), 323–332 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. Parker, E., Chatterjee, S.: An automata-theoretic algorithm for counting solutions to presburger formulas. In: Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 104–119. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  35. Presburger, M.: On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation. Hist. Philos. Logic 12(2), 225–233 (1991); Translated from the German and with commentaries by Dale Jacquette

    Article  MathSciNet  MATH  Google Scholar 

  36. Pugh, W.: Counting solutions to presburger formulas: how and why. SIGPLAN Not. 29(6), 121–134 (1994)

    Article  Google Scholar 

  37. Ramírez Alfonsín, J.L.: The Diophantine Frobenius problem. Oxford Lecture Series in Mathematics and its Applications, vol. 30. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  38. Scarf, H.: Test sets for integer programs. Math. Programming Ser. B 79(1-3), 355–368 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schrijver, A.: Theory of Linear and Integer Programming. Interscience Series in Discrete Mathematics. John Wiley & Sons Ltd., Chichester (1986)

    MATH  Google Scholar 

  40. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

  41. Stanley, R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980); Combinatorial mathematics, optimal designs and their applications. In: Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo. (1978)

    Google Scholar 

  42. Sturmfels, B.: On vector partition functions. J. Combin. Theory Ser. A 72(2), 302–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  44. Thomas, R.: A geometric Buchberger algorithm for integer programming. Math. Oper. Res. 20(4), 864–884 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Thomas, R.: The structure of group relaxations. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Handbook of Discrete Optimization (2003)

    Google Scholar 

  46. Verdoolaege, S., Woods, K.: Counting with rational generating functions. J. Symbolic Comput. 43(2), 75–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger arithmetic constraints. In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 21–32. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  48. Woods, K.: Rational Generating Functions and Lattice Point Sets. PhD thesis, University of Michigan (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woods, K. (2013). Presburger Arithmetic, Rational Generating Functions, and Quasi-Polynomials. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39212-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39212-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39211-5

  • Online ISBN: 978-3-642-39212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics