Advertisement

Asynchronous Games over Tree Architectures

  • Blaise Genest
  • Hugo Gimbert
  • Anca Muscholl
  • Igor Walukiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)

Abstract

We consider the distributed control problem in the setting of Zielonka asynchronous automata. Such automata are compositions of finite processes communicating via shared actions and evolving asynchronously. Most importantly, processes participating in a shared action can exchange complete information about their causal past. This gives more power to controllers, and avoids simple pathological undecidable cases as in the setting of Pnueli and Rosner. We show the decidability of the control problem for Zielonka automata over acyclic communication architectures. We provide also a matching lower bound, which is l-fold exponential, l being the height of the architecture tree.

Keywords

Control Problem Turing Machine Winning Strategy Shared Action Tree Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollig, B., Grindei, M.-L., Habermehl, P.: Realizability of concurrent recursive programs. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 410–424. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Church, A.: Logic, arithmetics, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35 (1962)Google Scholar
  3. 3.
    Clairambault, P., Gutierrez, J., Winskel, G.: The winning ways of concurrent games. In: LICS, pp. 235–244. IEEE (2012)Google Scholar
  4. 4.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific (1995)Google Scholar
  5. 5.
    Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS, pp. 321–330. IEEE (2005)Google Scholar
  6. 6.
    Gastin, P., Lerman, B., Zeitoun, M.: Distributed games with causal memory are decidable for series-parallel systems. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 275–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Gastin, P., Sznajder, N., Zeitoun, M.: Distributed synthesis for well-connected architectures. Formal Methods in System Design 34(3), 215–237 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Optimal Zielonka-type construction of deterministic asynchronous automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 52–63. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Katz, G., Peled, D., Schewe, S.: Synthesis of distributed control through knowledge accumulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 510–525. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Kupferman, O., Vardi, M.: Synthesizing distributed systems. In: LICS (2001)Google Scholar
  11. 11.
    Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local specifications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, p. 396. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Madhusudan, P., Thiagarajan, P.S., Yang, S.: The MSO theory of connectedly communicating processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 201–212. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus (1977)Google Scholar
  14. 14.
    Melliès, P.-A.: Asynchronous games 2: The true concurrency of innocence. TCS 358(2-3), 200–228 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    van der Meyden, R., Wilke, T.: Synthesis of distributed systems from knowledge-based specifications. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 562–576. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  17. 17.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: FOCS, pp. 746–757 (1990)Google Scholar
  18. 18.
    Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proceedings of the IEEE 77(2), 81–98 (1989)CrossRefGoogle Scholar
  19. 19.
    Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 127–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Zielonka, W.: Notes on finite asynchronous automata. RAIRO–Theoretical Informatics and Applications 21, 99–135 (1987)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Blaise Genest
    • 1
  • Hugo Gimbert
    • 2
  • Anca Muscholl
    • 2
  • Igor Walukiewicz
    • 2
  1. 1.CNRSIRISARennesFrance
  2. 2.LaBRI, CNRSUniversité BordeauxFrance

Personalised recommendations