Recent Advances for a Classical Scheduling Problem

  • Susanne Albers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)


We revisit classical online makespan minimization which has been studied since the 1960s. In this problem a sequence of jobs has to be scheduled on m identical machines so as to minimize the makespan of the constructed schedule. Recent research has focused on settings in which an online algorithm is given extra information or power while processing a job sequence. In this paper we review the various models of resource augmentation and survey important results.


Competitive Ratio Online Algorithm Total Processing Time Online Schedule Optimum Makespan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, G., Motwani, R., Zhu, A.: The load rebalancing problem. Journal of Algorithms 60(1), 42–59 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Albers, S.: Better bounds for online scheduling. SIAM Journal on Computing 29, 459–473 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albers, S., Hellwig, M.: On the value of job migration in online makespan minimization. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 84–95. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Albers, S., Hellwig, M.: Online makespan minimization with parallel schedules, arXiv:1304.5625 (2013)Google Scholar
  5. 5.
    Albers, S., Hellwig, M.: Semi-online scheduling revisited. Theoretical Computer Science 443, 1–9 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time explained by dual fitting. In: Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1228–1241 (2012)Google Scholar
  7. 7.
    Angelelli, E., Speranza, M.G., Tuza, Z.: Semi-on-line scheduling on two parallel processors with an upper bound on the items. Algorithmica 37, 243–262 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Angelelli, E., Speranza, M.G., Tuza, Z.: New bounds and algorithms for on-line scheduling: two identical processors, known sum and upper bound on the tasks. Discrete Mathematics & Theoretical Computer Science 8, 1–16 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Angelelli, E., Speranza, M.G., Tuza, Z.: Semi-online scheduling on two uniform processors. Theoretical Computer Science 393, 211–219 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Angelelli, E., Nagy, A.B., Speranza, M.G., Tuza, Z.: The on-line multiprocessor scheduling problem with known sum of the tasks. Journal of Scheduling 7, 421–428 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Azar, Y., Regev, O.: On-line bin-stretching. Theoretical Computer Science 268, 17–41 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. Journal of Computer and System Sciences 51, 359–366 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bartal, Y., Karloff, H., Rabani, Y.: A better lower bound for on-line scheduling. Infomation Processing Letters 50, 113–116 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chen, B., van Vliet, A., Woeginger, G.J.: A lower bound for randomized on-line scheduling algorithms. Information Processing Letters 51, 219–222 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chen, B., van Vliet, A., Woeginger, G.J.: A optimal algorithm for preemptive online scheduling. Operations Research Letters 18, 127–131 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cheng, T.C.E., Kellerer, H., Kotov, V.: Semi-on-line multiprocessor scheduling with given total processing time. Theoretical Computer Science 337, 134–146 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Dósa, G., Epstein, L.: Preemptive online scheduling with reordering. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 456–467. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan scheduling. In: Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 603–612 (2008)Google Scholar
  19. 19.
    Epstein, L.: Bin stretching revisited. Acta Informatica 39(2), 7–117 (2003)CrossRefGoogle Scholar
  20. 20.
    Faigle, U., Kern, W., Turan, G.: On the performance of on-line algorithms for partition problems. Acta Cybernetica 9, 107–119 (1989)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3, 343–353 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Galambos, G., Woeginger, G.: An on-line scheduling heuristic with better worst case ratio than Graham’s list scheduling. SIAM Journal on Computing 22, 349–355 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Garay, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)Google Scholar
  24. 24.
    Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proc. 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 564–565 (2000)Google Scholar
  25. 25.
    Graham, R.L.: Bounds for certain multi-processing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)Google Scholar
  26. 26.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems theoretical and practical results. Journal of the ACM 34, 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of the ACM 47, 617–643 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling problem. Journal of Algorithms 20, 400–430 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the partition problem. Operations Research Letters 21, 235–242 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Leung, J. (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ch. 15. CRC Press (2004)Google Scholar
  31. 31.
    Rudin III, J.F.: Improved bounds for the on-line scheduling problem. Ph.D. Thesis. The University of Texas at Dallas (May 2001)Google Scholar
  32. 32.
    Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the online scheduling problem. SIAM Journal on Computing 32, 717–735 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Mathematics of Operations Reseach 34(2), 481–498 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Information Processing Letters 63, 51–55 (1997)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28, 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang, G.: A simple semi on-line algorithm for P2/ / C max with a buffer. Information Processing Letters 61, 145–148 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susanne Albers
    • 1
  1. 1.Department of Computer ScienceHumboldt-Universität zu BerlinGermany

Personalised recommendations