Coalgebraic Announcement Logics

  • Facundo Carreiro
  • Daniel Gorín
  • Lutz Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)


In epistemic logic, dynamic operators describe the evolution of the knowledge of participating agents through communication, one of the most basic forms of communication being public announcement. Semantically, dynamic operators correspond to transformations of the underlying model. While metatheoretic results on dynamic epistemic logic so far are largely limited to the setting of Kripke models, there is evident interest in extending its scope to non-relational modalities capturing, e.g., uncertainty or collaboration. We develop a generic framework for non-relational dynamic logic by adding dynamic operators to coalgebraic logic. We discuss a range of examples and establish basic results including bisimulation invariance, complexity, and a small model property.


Modal Logic Dynamic Operator Natural Transformation Kripke Model Epistemic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baltag, A.: A coalgebraic semantics for epistemic programs. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 82, pp. 17–38. Elsevier (2003)Google Scholar
  2. 2.
    Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–315 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Cîrstea, C., Sadrzadeh, M.: Coalgebraic epistemic update without change of model. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 158–172. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logics. Springer (2007)Google Scholar
  6. 6.
    Duque, D.F., van Benthem, J., Pacuit, E.: Evidence logic: a new look at neighborhood structures. In: Advances in Modal Logics. College Publications (2012)Google Scholar
  7. 7.
    Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41, 340–367 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    French, T., van der Hoek, W., Iliev, P., Kooi, B.: Succinctness of epistemic languages. In: Int. Joint Conf. on Artif. Int., pp. 881–886 (2011)Google Scholar
  9. 9.
    French, T., van Ditmarsch, H.: Undecidability for arbitrary public announcement logic. In: Advances in Modal Logics, pp. 23–42. College Publications (2008)Google Scholar
  10. 10.
    Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic Behavior 35, 31–53 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hintikka, J.: Knowledge and belief. Cornell University Press (1962)Google Scholar
  12. 12.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 302–313. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lutz, C.: Complexity and succinctness of public announcement logic. In: Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 137–143 (2006)Google Scholar
  15. 15.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309, 177–193 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 2004 (2002)MathSciNetGoogle Scholar
  17. 17.
    Plaza, J.A.: Logics of public communications. In: International Symposium on Methodologies for Intelligent Systems, pp. 201–216 (1989)Google Scholar
  18. 18.
    Rohde, P.: Moving in a crumbling network: The balanced case. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 310–324. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Algebr. Prog. 73, 97–110 (2007)zbMATHCrossRefGoogle Scholar
  20. 20.
    Schröder, L., Pattinson, D.: Coalgebraic correspondence theory. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 328–342. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Schröder, L., Pattinson, D.: Modular algorithms for heterogeneous modal logics via multi-sorted coalgebra. Math. Struct. Comput. Sci. 21(2), 235–266 (2011)zbMATHCrossRefGoogle Scholar
  22. 22.
    Segerberg, K.: An essay in classical modal logic. No. 1 in Filosofiska studier utgivna av Filosofiska föreningen och Filosofiska institutionen vid Uppsala univ. (1971)Google Scholar
  23. 23.
    Steiner, D., Studer, T.: Total public announcements. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 498–511. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Facundo Carreiro
    • 1
  • Daniel Gorín
    • 2
  • Lutz Schröder
    • 2
  1. 1.Institute for Logic, Language and ComputationUniversiteit van AmsterdamThe Netherlands
  2. 2.Department of Computer ScienceUniversität Erlangen-NürnbergGermany

Personalised recommendations