Algorithms, Networks, and Social Phenomena

  • Jon Kleinberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)


We consider the development of computational models for systems involving social networks and large human audiences. In particular, we focus on the spread of information and behavior through such systems, and the ways in which these processes are affected by the underlying network structure.


social networks random graphs contagion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arcaute, E., Kirsch, A., Kumar, R., Liben-Nowell, D., Vassilvitskii, S.: On threshold behavior in query incentive networks. In: Proc. 8th ACM Conference on Electronic Commerce, pp. 66–74 (2007)Google Scholar
  2. 2.
    Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On bitcoin and red balloons. In: Proc. ACM Conference on Electronic Commerce, pp. 56–73 (2012)Google Scholar
  3. 3.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: Membership, growth, and evolution. In: Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2006)Google Scholar
  4. 4.
    Blume, L., Easley, D., Kleinberg, J., Kleinberg, R., Tardos, É.: Which networks are least susceptible to cascading failures? In: Proc. 52nd IEEE Symposium on Foundations of Computer Science (2011)Google Scholar
  5. 5.
    Cebrián, M., Coviello, L., Vattani, A., Voulgaris, P.: Finding red balloons with split contracts: robustness to individuals’ selfishness. In: Proc. 44th ACM Symposium on Theory of Computing. pp. 775–788 (2012)Google Scholar
  6. 6.
    Centola, D., Macy, M.: Complex contagions and the weakness of long ties. American Journal of Sociology 113, 702–734 (2007)Google Scholar
  7. 7.
    Chierichetti, F., Kleinberg, J.M., Liben-Nowell, D.: Reconstructing patterns of information diffusion from incomplete observations. In: Proc. 24th Advances in Neural Information Processing Systems. pp. 792–800 (2011)Google Scholar
  8. 8.
    Dodds, P., Watts, D.: Universal behavior in a generalized model of contagion. Physical Review Letters 92, 218701 (2004)CrossRefGoogle Scholar
  9. 9.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press (2010)Google Scholar
  10. 10.
    Golub, B., Jackson, M.O.: Using selection bias to explain the observed structure of internet diffusions. Proc. Natl. Acad. Sci. USA 107(24), 10833–10836 (2010)Google Scholar
  11. 11.
    Granovetter, M.: Threshold models of collective behavior. American Journal of Sociology 83, 1420–1443 (1978)Google Scholar
  12. 12.
    Jackson, M.O.: Social and Economic Networks. Princeton University Press (2008)Google Scholar
  13. 13.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence in a social network. In: Proc. 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)Google Scholar
  14. 14.
    Kleinberg, J.: Cascading behavior in networks: Algorithmic and economic issues. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V. (eds.) Algorithmic Game Theory, pp. 613–632. Cambridge University Press (2007)Google Scholar
  15. 15.
    Kleinberg, J., Raghavan, P.: Query incentive networks. In: Proc. 46th IEEE Symposium on Foundations of Computer Science, pp. 132–141 (2005)Google Scholar
  16. 16.
    Kossinets, G., Watts, D.: Empirical analysis of an evolving social network. Science 311, 88–90 (2006)Google Scholar
  17. 17.
    Leskovec, J., Adamic, L., Huberman, B.: The dynamics of viral marketing. ACM Transactions on the Web 1(1) (May 2007)Google Scholar
  18. 18.
    Liben-Nowell, D., Kleinberg, J.: Tracing information flow on a global scale using Internet chain-letter data. Proc. Natl. Acad. Sci. USA 105(12), 4633–4638 (2008)Google Scholar
  19. 19.
    Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: Proc. 39th ACM Symposium on Theory of Computing (2007)Google Scholar
  20. 20.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press (2010)Google Scholar
  21. 21.
    Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.: Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  22. 22.
    Onnela, J.P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., Kaski, K., Kertesz, J., Barabasi, A.L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 104, 7332–7336 (2007)Google Scholar
  23. 23.
    Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proc. 33rd ACM Symposium on Theory of Computing, pp. 749–753 (2001)Google Scholar
  24. 24.
    Pickard, G., Pan, W., Rahwan, I., Cebrian, M., Crane, R., Madan, A., Pentland, A.: Time-critical social mobilization. Science 334(6055), 509–512 (2011)Google Scholar
  25. 25.
    Rogers, E.: Diffusion of Innovations, 4th edn. Free Press (1995)Google Scholar
  26. 26.
    Schelling, T.: Micromotives and Macrobehavior. Norton (1978)Google Scholar
  27. 27.
    Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press (2009)Google Scholar
  28. 28.
    Ugander, J., Backstrom, L., Kleinberg, J.: Subgraph frequencies: Mapping the empirical and extremal geography of large graph collections. In: Proc. 22nd International World Wide Web Conference (2013)Google Scholar
  29. 29.
    Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. Proc. Natl. Acad. Sci. USA 109(16), 5962–5966 (2012)Google Scholar
  30. 30.
    Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 99(9), 5766–5771 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jon Kleinberg
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations