Non-contact Measurement of Biological Signals Using Microwave Radar

  • Hiroki Morodome
  • Satoshi Suzuki
  • Takafumi Asao
  • Kentaro Kotani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8016)


The objective of this study was to develop a prototype system to monitor biological signals using microwave radar, without making contact with the body and without removing clothing. The prototype system has a microwave Doppler radar antenna with a 24-GHz frequency and approximately 7-mW output power. Experiments were conducted with a group of subjects. We found that the prototype system precisely captured the heart rate and the heart-rate variability (HRV). Our prototype system allows for the monitoring of biological signals, without placing any burden on the monitored individuals


Non-contact Microwave heartbeat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kikuchi, M., Ishihara, M., Matsui, T., et al.: Biomedical engineering’s contribution to defending the homeland. IEEE Eng. Med. Biol. Mag. 23, 175–186 (2004)CrossRefGoogle Scholar
  2. 2.
    Matsui, T., Hagisawa, K., Ishizuka, T., et al.: A novel method to prevent secondary exposure of medical and rescue personnel to toxic materials under biochemical hazard conditions using microwave radar and infrared thermography. IEEE Trans. Biomed. Eng. 51, 2184–2188 (2004)CrossRefGoogle Scholar
  3. 3.
    Matsui, T., Ishizuka, T., Takase, B., et al.: Non-Contact determination of vital sign alterations in hypovolemic states induced by massive hemorrhage: an experimental attempt to monitor the condition of injured persons behind barriers or under disaster rubble. Med. Biol. Eng. Compu. 42, 807–811 (2004)CrossRefGoogle Scholar
  4. 4.
    Richter, S., Schaefer, A., Menger, M.D., et al.: Mapping of the cardiac sympathetic nervous system by single photon emission tomography with technetium-99 m-labeled fluorobenzylpiperidine derivative (99mTc-FBPBAT): result of a feasibility study in a porcine model and an initial dosimetric estimation in humans. Nucl. Med. Commun. 26(4), 36–368 (2005)CrossRefGoogle Scholar
  5. 5.
    Ruediger, H., Seibt, R., Scheuch, K., et al.: Sympathetic and parasympathetic activation in heart rate variability in malehypertensive patients under mental stress. J. Hum. Hypertens. 8(5), 307–315 (2004)CrossRefGoogle Scholar
  6. 6.
    Tuininga, Y.S., Crijns, H.J., Brouwer, J., et al.: Evaluation of importance of central effects of atenolol and metoprolol measured by heart rate variability during mental performance tasks, physical exercise, and daily life in stable postinfarct patients. Circulation 92(12), 3415–3423 (1995)CrossRefGoogle Scholar
  7. 7.
    Singh, N., Mironov, D., Armstrong, P.W., et al.: Heart rate variability assessment early after acute myocardial infarction. Pathophysiological and prognostic correlates. Circulation 93, 1388–1395 (1996)CrossRefGoogle Scholar
  8. 8.
    Carney, R.M., Blumenthal, J.A., Stein, P.K., et al.: Depression, heart rate variability, and acute myocardial infarction. Circulation 104, 2024–2028 (2001)CrossRefGoogle Scholar
  9. 9.
    Clayton, R.H., Bowman, A.J., Ford, G.A., et al.: Measurement of baroreflex gain form heart rate and blood pressure spectra: A comparison of spectral estimation techniques. Physiol. Meas. 16, 131–139 (1995)CrossRefGoogle Scholar
  10. 10.
    Suzuki, S., Sumi, K., Matsubara, M.: Cardiac autonomic control immediately after exercise in female distance runners. J. Physiol. Anthropol. 27, 325–332 (2008b)CrossRefGoogle Scholar
  11. 11.
    Ciaccio, E.J., Hiatt, M., Hegyi, T., et al.: Measurement and monitoring of electrocardiogram belt tension in premature infants for assessment of respiratory function. Biomed. Eng. Online 6, 1–11 (2007)CrossRefGoogle Scholar
  12. 12.
    Jacobs, J., Embree, P., Glei, M., Christensen, S., Sullivan, P.: Characterization of a novel heart and respiratory rate sensor. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 3, pp. 2223–2226 (2004)Google Scholar
  13. 13.
    Wang, F., Tanaka, M., Chonan, S.: Development of a wearable mental stress evaluation system using PVDF film sensor. J. Adv. Sci. 18, 170–173 (2006)CrossRefGoogle Scholar
  14. 14.
    Korach, M., Sharshar, T., Jarrin, I., et al.: Cardiac Variability in critically ill adults: influence of sepsis. Crit. Care Med. 29, 1380–1385 (2001)CrossRefGoogle Scholar
  15. 15.
    Pontet, J., Contreras, P., Curbelo, A., et al.: Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J. Crit. Care 18, 156–163 (2003)CrossRefGoogle Scholar
  16. 16.
    Zheng, J.W., Zhang, Z.B., Wu, T.H., Zhang, Y.: A wearable mobihealth care system supporting real-time diagnosis and alarm. Med. Boil. Eng. Comput. 45(9), 877–885 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hiroki Morodome
    • 1
  • Satoshi Suzuki
    • 2
  • Takafumi Asao
    • 2
  • Kentaro Kotani
    • 2
  1. 1.Graduate School of Science and EngineeringKansai UniversitySuitaJapan
  2. 2.Faculty of Engineering ScienceKansai UniversitySuitaJapan

Personalised recommendations