Correction Method Based on KI-VPA Model for Changes in Vibratory Perception Caused by Adaptation

  • Yuki Mori
  • Takayuki Tanaka
  • Shun’ichi Kaneko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8016)


This paper describes a method for correcting differences in human vibratory perception caused by sensory adaptation. Humans feel a vibrational strength when a vibrating device is held in the hand. However when the vibrational frequency is changed, human perception of the new frequency is affected by the vibrational frequency experienced before the change. This is called sensory adaptation. The KatagiriAida model-based vibratory perception adaptation (KI-VPA) mode can estimate changes in vibratory perception caused bt adaptation. We have developed a correction method on basis of the KI-VPA model and tested the method on ten human subjects. The results indicate that the proposed correction method reduced the effects of adaptive changes to vibratory perception.


Vibration Vibratory perception Tactile sense Vibration alert interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsukada, K., Yasumura, M.: ActiveBelt: Belt-Type Wearable Tactile Display for Directional Navigation. In: Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 384–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Jones, L.A., Lockyer, B., Piateski, E.: Tactile display and vibrotactile pattern recognition on the torso. Advanced Robotics 20(12), 1359–1374 (2006)CrossRefGoogle Scholar
  3. 3.
    Yao, H.S., Grant, D., Cruz, M.: Perceived Vibration Strength in Mobile Devices: the Effect of Weight and Frequency. IEEE Transaction on Haptics (2009)Google Scholar
  4. 4.
    Morioka, M., Griffin, M.J.: Magnitude-dependence of equivalent comfort contours for foreand-art, lateral and vertical hand-transmitted vibration. Journal of Sound and Vibration 295, 633–648 (2006)CrossRefGoogle Scholar
  5. 5.
    Hahn, J.F.: Vibrotactile Adaptation and Recovery Measured by Two Methods. Jounal of Experimental Psychology 71(5), 655–658 (1966)CrossRefGoogle Scholar
  6. 6.
    Tommerdahl, M., Hester, K.D., Felix, E.R., Hollins, M., Favorov, O.V., Quibrera, P.M., Whitsel, B.L.: Human vibrotactile frequency discriminative capacity after adaptation to 25 Hz or 200 Hz stimulation. Brain Research 1057, 1–9 (2005)CrossRefGoogle Scholar
  7. 7.
    Mori, Y., Tanaka, T., Kaneko, S.: Design of Vibration Alert Interface Based on Tactile Adaptation Model to Vibration Stimulation. In: Smith, M.J., Salvendy, G. (eds.) HCII 2011, Part I. LNCS, vol. 6771, pp. 462–469. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Katagiri, Y., Aida, K.: Simulated nonlinear dynamics of laterally interactive arrayed neurons. In: Optomechatronic Technologies 2008 SPIE Proceedings (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuki Mori
    • 1
  • Takayuki Tanaka
    • 2
  • Shun’ichi Kaneko
    • 2
  1. 1.RIKENNagoyaJapan
  2. 2.Hokkaido UniversitySapporoJapan

Personalised recommendations