Skip to main content

Growth and Spectroscopy of Semiconductor Quantum Rings

  • Chapter
  • First Online:
Physics of Quantum Rings

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Quantum rings are unique nanostructures as they are topologically not simply connected and therefore different from most other low-dimensional systems such as quantum dots, quantum wires or quantum wells. This topology gives rise to an intriguing energy structure, in particular, when a magnetic field is applied such that a flux can penetrate through the ring’s interior. Flux quantization will lead to a ground state, which has a non-vanishing angular momentum, and the intraband transitions are affected by the corresponding change in dipole-allowed transitions. Quantum rings, which are of the order of 10 nm in size are of particular interest, because they make it possible to study these systems in the true quantum limit.

In this chapter, we will review the growth techniques, which lead to the self-organized formation of quantum rings of a few tens of nanometers in diameter. The mechanisms will be discussed, which ‘invert’ the geometry of InAs islands, grown in the Stranski-Krastanov mode on GaAs, when they are partially capped with GaAs. When the thus formed nanorings are embedded in a suitable heterostructure, they can be electrically tuned and carriers can be injected with single-electron/single-hole precision. We will discuss, how the number of carriers and the strength of the applied field influence the single-particle and many-particle ground states, which can be probed by capacitance-voltage measurements. Also, far-infrared absorption spectra will be presented, which show the influence of flux quantization on the intraband transitions. These spectroscopic techniques, together with photoluminescence data obtained on single rings as well as on ring ensembles, make it possible to obtain an in-depth view into the detailed energetic structure of nanoscopic rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1998) and references therein

    Google Scholar 

  2. P.M. Petroff, A. Lorke, A. Imamoglu, Phys. Today 54, 46 (2001)

    Article  ADS  Google Scholar 

  3. L. Wang, A. Rastelli, S. Kiravittaya, M. Benyoucef, O.G. Schmidt, Adv. Mater. 21, 2601 (2009)

    Article  Google Scholar 

  4. R. Songmuang, S. Kiravittaya, O.G. Schmidt, Appl. Phys. Lett. 82, 2892 (2003)

    Article  ADS  Google Scholar 

  5. I.N. Stranski, L. Krastanow, Akad. Wiss. Wien 146, 797 (1938)

    Google Scholar 

  6. Z.M. Wang (ed.), Quantum Dot Devices. Lecture Notes in Nanoscale Science and Technology, vol. 13 (Springer, Berlin, 2012)

    Google Scholar 

  7. M. Büttiker, Y. Imry, R. Landauer, Phys. Lett. A 96, 365 (1983)

    Article  ADS  Google Scholar 

  8. J. Wu, Z.M. Wang, K. Holmes, E. Marega Jr., Z. Zhou, H. Li, Y.I. Mazur, G.J. Salamo, Appl. Phys. Lett. 100, 203117 (2012)

    Article  ADS  Google Scholar 

  9. J.M. Garcia, G. Medeiros-Ribeiro, K. Schmit, T. Ngo, J.L. Feng, A. Lorke, J.P. Kotthaus, P.M. Petroff, Appl. Phys. Lett. 71, 2014 (1997)

    Article  ADS  Google Scholar 

  10. D. Granados, J.M. García, T. Ben, S.I. Molina, Appl. Phys. Lett. 86, 071918 (2005)

    Article  ADS  Google Scholar 

  11. T. Mano, T. Kuroda, K. Kuroda, K. Sakoda, J. Nanophotonics 3, 031605 (2009)

    Article  ADS  Google Scholar 

  12. H. Pettersson, R.J. Warburton, A. Lorke, K. Karrai, J.P. Kotthaus, J.M. Garcia, P.M. Petroff, Physica E 6, 510 (2000)

    Article  ADS  Google Scholar 

  13. R.J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J.M. Garcia, W. Schoenfeld, P.M. Petroff, Nature 405, 926 (2000)

    Article  ADS  Google Scholar 

  14. W. Lei, C. Notthoff, A. Lorke, D. Reuter, A.D. Wieck, Appl. Phys. Lett. 96, 033111 (2010)

    Article  ADS  Google Scholar 

  15. T.C. Lin, C.H. Lin, H.S. Ling, Y.J. Fu, W.H. Chang, S.D. Lin, C.P. Lee, Phys. Rev. B 80, 081304R (2009)

    Article  ADS  Google Scholar 

  16. C.H. Lin, H.S. Lin, C.C. Huang, S.K. Su, S.D. Lin, K.W. Sun, C.P. Lee, Y.K. Liu, M.D. Yang, J.L. Shen, Appl. Phys. Lett. 94, 183101 (2009)

    Article  ADS  Google Scholar 

  17. A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, J.M. Garcia, P.M. Petroff, Phys. Rev. Lett. 84, 2223 (2000)

    Article  ADS  Google Scholar 

  18. A. Lorke, J.M. Garcia, R. Blossey, R.J. Luyken, P.M. Petroff, Adv. Solid State Phys. 43, 125 (2003)

    Article  Google Scholar 

  19. A. Lorke, R.J. Luyken, J.M. Garcia, P.M. Petroff, Jpn. J. Appl. Phys. 40, 1857 (2001)

    Article  ADS  Google Scholar 

  20. A. Lorke, R. Blossey, J.M. Garcia, M. Bichler, G. Abstreiter, Mater. Sci. Eng. B 88, 225 (2002)

    Article  Google Scholar 

  21. H. Eisele, A. Lenz, R. Heitz, R. Timm, M. Dähne, Y. Temko, T. Suzuki, K. Jacobi, J. Appl. Phys. 104, 124301 (2008)

    Article  ADS  Google Scholar 

  22. W. Lei, H.H. Tan, C. Jagadish, Appl. Phys. Lett. 95, 013108 (2009)

    Article  ADS  Google Scholar 

  23. W. Lei, J. Nanopart. Res. 13, 1647 (2011)

    Article  ADS  Google Scholar 

  24. H.S. Ling, C.P. Lee, J. Appl. Phys. 102, 024314 (2007)

    Article  ADS  Google Scholar 

  25. R. Magri, S. Heun, G. Biasiol, A. Locatelli, T.O. Mentes, L. Sorba, in Physics of Semiconductors: 29th International Conference on the Physics of Semiconductors. AIP Conference Proceedings, vol. 1199 (2010), p. 3

    Google Scholar 

  26. C. Zhao, Y.H. Chen, C.X. Cui, B. Xu, J. Sun, W. Lei, L.K. Lu, Z.G. Wang, J. Chem. Phys. 123, 094708 (2005)

    Article  ADS  Google Scholar 

  27. N. Sritirawisarn, F.W.M. van Otten, R. Nötzel, J. Phys. Conf. Ser. 245, 012004 (2010)

    Article  ADS  Google Scholar 

  28. Q. Xie, A. Madhukar, P. Chen, N.P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995)

    Article  ADS  Google Scholar 

  29. W. Lei, Y.H. Chen, P. Jin, X.L. Ye, Y.L. Wang, B. Xu, Z.G. Wang, Appl. Phys. Lett. 88, 063114 (2006)

    Article  ADS  Google Scholar 

  30. G. Springholz, M. Pinczolits, V. Holy, S. Zerlauth, I. Vavra, G. Bauer, Physica E 9, 149 (2001)

    Article  ADS  Google Scholar 

  31. J. Tersoff, C. Teichert, M.G. Lagally, Phys. Rev. Lett. 76, 1675 (1996)

    Article  ADS  Google Scholar 

  32. H.X. Li, T. Daniels-Race, M.A. Hasan, Appl. Phys. Lett. 80, 1367 (2002)

    Article  ADS  Google Scholar 

  33. T. Raz, D. Ritter, G. Bahir, Appl. Phys. Lett. 82, 1706 (2003)

    Article  ADS  Google Scholar 

  34. I. Kegel, T.H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, J.M. García, P.M. Petroff, Phys. Rev. Lett. 85, 1694 (2000)

    Article  ADS  Google Scholar 

  35. V. Bressler-Hill et al., Phys. Rev. B 50, 8479 (1994) and references therein

    Article  ADS  Google Scholar 

  36. S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, S. Schlagowski, Science 282, 5390 (1998)

    Article  Google Scholar 

  37. R. Blossey, A. Lorke, Phys. Rev. E 65, 021603 (2002)

    Article  ADS  Google Scholar 

  38. J.M. Ulloa, P. Offermans, P.M. Koenraad, in Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, ed. by M. Henini (Elsevier, Oxford, 2008), pp. 165–200

    Chapter  Google Scholar 

  39. T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, N. Koguchi, Nano Lett. 5, 425 (2005)

    Article  ADS  Google Scholar 

  40. T. Mano, N. Koguchi, J. Cryst. Growth 278, 108 (2005)

    Article  ADS  Google Scholar 

  41. K. Watanabe, N. Koguchi, Y. Gotoh, Jpn. J. Appl. Phys. 39, L79 (2000)

    Article  ADS  Google Scholar 

  42. M. Yamagiwa, T. Mano, T. Kuroda, T. Takeno, K. Sakoda, G. Kido, N. Koguchi, F. Minami, Appl. Phys. Lett. 89, 113115 (2006)

    Article  ADS  Google Scholar 

  43. R.J. Warburton, B.T. Miller, C.S. Dürr, C. Bödefeld, K. Karrai, J.P. Kotthaus, G. Medeiros-Ribeiro, P.M. Petroff, S. Huant, Phys. Rev. B 58, 16221 (1998)

    Article  ADS  Google Scholar 

  44. R.J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J.M. Garcia, W. Schoenfeld, P.M. Petroff, Physica E 9, 124 (2001)

    Article  ADS  Google Scholar 

  45. A. Wojs, P. Hawrylak, Phys. Rev. B 55, 13066 (1997)

    Article  ADS  Google Scholar 

  46. A.O. Govorov, S.E. Ulloa, K. Karrai, R.J. Warburton, Phys. Rev. B 66, 081309 (2002)

    Article  ADS  Google Scholar 

  47. J.A. Barker, R.J. Warburton, E.P. O’Reilly, Phys. Rev. B 69, 035327 (2004)

    Article  ADS  Google Scholar 

  48. A.G. Aronov, Yu.V. Sharvin, Rev. Mod. Phys. 59, 755 (1987)

    Article  ADS  Google Scholar 

  49. T. Chakraborty, P. Pietiläinen, Phys. Rev. B 50, 8460 (1994)

    Article  ADS  Google Scholar 

  50. L. Wendler, V.M. Fomin, Phys. Status Solidi (b) 191, 409 (1995)

    Article  ADS  Google Scholar 

  51. A. Lorke, R.J. Luyken, Physica B 256–258, 424 (1998)

    Article  Google Scholar 

  52. B.T. Miller, W. Hansen, S. Manus, R.J. Luyken, A. Lorke, J.P. Kotthaus, S. Huant, G. Medeiros-Ribeiro, P.M. Petroff, Phys. Rev. B 56, 6764 (1997)

    Article  ADS  Google Scholar 

  53. H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, P.M. Petroff, Phys. Rev. Lett. 73, 2252 (1994)

    Article  ADS  Google Scholar 

  54. M. Fricke, A. Lorke, J.P. Kotthaus, G. Medeiros-Ribeiro, P.M. Petroff, Europhys. Lett. 36, 197 (1996)

    Article  ADS  Google Scholar 

  55. V. Halonen, P. Pietiläinen, T. Chakraborty, Europhys. Lett. 33, 377 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung and the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, W., Lorke, A. (2014). Growth and Spectroscopy of Semiconductor Quantum Rings. In: Fomin, V. (eds) Physics of Quantum Rings. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39197-2_2

Download citation

Publish with us

Policies and ethics