Skip to main content

Engineering of Electron States and Spin Relaxation in Quantum Rings and Quantum Dot-Ring Nanostructures

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Quantum nanostructures are frequently referred to as artificial atoms. Like the natural atoms they show a discrete spectrum of energy levels but at the same time they exhibit new physics which has no analogue in real atoms. Electrons in an atom are attracted to the nucleus by a potential that diminishes inversely proportional to the distance from the center of the atom. This feature, together with the Coulomb interactions between electrons, determines properties of natural atoms. On the other hand, in quantum nanostructures one can (almost) freely design the shape of the confinement potential. As a result, a variety of properties of quantum nanostructure can be modified according to the designer’s will.

The aim of this chapter is to demonstrate in a detailed way how these properties depend on the geometry of the confinement potentials. Quantum rings can be narrow, quasi-one-dimensional objects with periodic boundary conditions. But they also can be wide, like a quantum dot with a small hole in the center that leads to a nontrivial topology. The electronic properties, determined by the energy spectrum and the distribution of the wave functions, are very different in these limiting cases. They are also different from the properties of a quantum dot. In this chapter we demonstrate how selected properties are modified when the confinement changes in such a way that the nanostructure evolves from a quantum dot to a wide quantum ring and than to a narrow, quasi-one-dimensional nanoring. Besides single quantum rings we describe properties of two coupled nanorings and of systems composed of a quantum ring coupled to a quantum dot. We are mainly interested in properties that are connected to possible applications of quantum nanostructures. There is a common belief that such systems are among the most promising candidates for realization of qubits in quantum computing. However, physical implementation requires, among others, relatively long decoherence time, much longer than the gate operation times. Assuming the spin-orbit-mediated electron-phonon interaction as the dominant relaxation mechanism for spin qubits, we show how the relaxation time depends on the details of the confinement potential. We first compare the relaxation times calculated for quantum dots and quantum rings of different shapes and sizes. However, it seems that complex structures composed of a quantum dot surrounded by a quantum ring can have far more interesting properties due to the high controllability of the spatial distribution of the electronic wave function. The results indicate that the main factor that determines the relaxation time is the so-called overlap factor, i.e., the overlap of the radial parts of the wave functions of the ground and first two excited states. With this knowledge, one can try to optimize the confinement potential with respect to the relaxation time. By tuning the relative positions of the bottoms of the ring and dot confinement potentials one can control the overlap factor, what in turn allows to control the relaxation time. The same effect can be achieved by modifying the height of the potential barrier between the ring and the dot. A high controllability is also expected in a similar system where the central quantum dot is replaced by a small ring, i.e., in a system of two coupled concentric quantum rings.

The wave function engineering allows one to control not only the relaxation time. We demonstrate that the same overlap factor determines also optical properties of quantum nanostructures. Using realistic parameters we show that changing the shape of the confinement potential it is possible to modify the microwave and infrared absorption cross sections of the dot-ring nanostructure. That way, the nanostructures can be moved over from highly absorbing to almost transparent. The last property analyzed in this chapter is the conductivity of a system composed of many dot-ring nanostructures. Apart from unique properties of a single nanostructure, interesting behavior emerges when such structures are combined into a two-dimensional array. If they are located sufficiently close to each other, electrons can tunnel between them, making a system that resembles a narrow band crystal. Since the tunneling rate depends on the overlap of the electron wave functions on adjoining structures, the transport properties would be dependent on the shape of the confinement potential. As a result, a metal-insulator transition can be easily induced in the array. We demonstrate a way how to control the confinement potential globally for the whole array.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Büttiker, Y. Imry, R. Landauer, Phys. Lett. A 96, 365 (1969)

    Article  Google Scholar 

  2. L.P. Lévy, G. Dolan, J. Dunsmuir, H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990)

    Article  ADS  Google Scholar 

  3. D. Mailly, C. Chapelier, A. Benoit, Phys. Rev. Lett. 70, 2020 (1993)

    Article  ADS  Google Scholar 

  4. H. Bluhm, N.C. Koschnick, J.A. Bert, M.E. Huber, K.A. Moler, Phys. Rev. Lett. 102, 136802 (2009)

    Article  ADS  Google Scholar 

  5. N.A.J.M. Kleemans, I.M.A. Bominaar-Silkens, V.M. Fomin, V.N. Gladilin, D. Granados, A.G. Taboada, J.M. García, P. Offermans, U. Zeitler, P.C.M. Christianen, J.C. Maan, J.T. Devreese, P.M. Koenraad, Phys. Rev. Lett. 99, 146808 (2009)

    Article  ADS  Google Scholar 

  6. A. Fuhrer, S.L. Scher, T. Ihn, T. Henzel, K. Ensslin, W. Wegscheider, M. Bichler, Nature 413, 822 (2001)

    Article  ADS  Google Scholar 

  7. T. Ihn, A. Fuhrer, K. Ensslin, W. Wegscheider, M. Bichler, Physica E 26, 225 (2005)

    Article  ADS  Google Scholar 

  8. V. Chandrasekhar, R.A. Webb, M.J. Brady, M.B. Ketchen, W.J. Gallagher, A. Kleinsasser, Phys. Rev. Lett. 67, 3578 (1991)

    Article  ADS  Google Scholar 

  9. A.C. Bleszynski-Jayich, W.E. Shanks, B. Peaudecerf, E. Ginossar, F. von Oppen, L. Glazman, J.G.E. Harris, Science 326, 5950 (2009)

    Article  Google Scholar 

  10. W. Lei, C. Notthoff, A. Lorke, D. Reuter, A.D. Wieck, Appl. Phys. Lett. 96, 33111 (2010)

    Article  Google Scholar 

  11. A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, Phys. Rev. Lett. 84, 2223 (2000)

    Article  ADS  Google Scholar 

  12. P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. García, M. Fomin, V.N. Gladilin, J.T. Devreese, Appl. Phys. Lett. 87, 131902 (2005)

    Article  ADS  Google Scholar 

  13. D. Wohlleben, M. Esser, P. Freche, E. Zipper, M. Szopa, Phys. Rev. Lett. 66, 3191 (1991)

    Article  ADS  Google Scholar 

  14. E. Zipper, M. Kurpas, M. Szelag, J. Dajka, M. Szopa, Phys. Rev. B 74, 125426 (2006)

    Article  ADS  Google Scholar 

  15. J.E. Mooij, T.P. Orlando, L.S. Levitov, L. Tian, C.H. van der Wal, S. Lloyd, Science 285, 1036 (1999)

    Article  Google Scholar 

  16. V.N. Golovach, A.V. Khaetskii, D. Loss, Phys. Rev. Lett. 93, 016601 (2004)

    Article  ADS  Google Scholar 

  17. M. Nakahara, T. Ohmi, Quantum Computing: From Linear Algebra to Physical Realizations (CRC Press, Boca Raton, 2008)

    Book  Google Scholar 

  18. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  19. L.M.K. Vandersypen, R. Hanson, L.H. Willems van Beveren, J.M. Elzerman, J.S. Greidanus, S. De Franceschi, L.P. Kouwenhoven, in Quantum Computing and Quantum Bits in Mesoscopic Systems, ed. by A. Leggett, B. Ruggiero, P. Silvestrini (Kluwer Academic Plenum, Dordrecht, 2004)

    Google Scholar 

  20. V. Baranwal, G. Biasiol, S. Heun, A. Locatelli, T.O. Mentes, M. Niño Orti, Phys. Rev. B 80, 155328 (2009)

    Article  ADS  Google Scholar 

  21. T. Mano, T. Kuroda, K. Mitsuishi, M. Yamagiwa, X.-J. Guo, K. Furuya, K. Sakoda, N. Koguchi, J. Cryst. Growth 301, 740 (2007)

    Article  ADS  Google Scholar 

  22. T. Kuroda, T. Mano, T. Ochiai, S. Sanguinetti, K. Sakoda, G. Kido, N. Koguchi, Phys. Rev. B 72, 20530 (2005)

    Article  Google Scholar 

  23. E. Zipper, M. Kurpas, J. Sadowski, M.M. Maśka, J. Phys. Condens. Matter 23, 115302 (2011)

    Article  ADS  Google Scholar 

  24. S. Amasha, K. MacLean, P. Iuliana, D.M. Zumbühl, M.A. Kastner, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 100, 046803 (2008)

    Article  ADS  Google Scholar 

  25. C. Somaschini, S. Bietti, N. Koguchi, S. Sanguinetti, Nanotechnology 22, 185602 (2011)

    Article  ADS  Google Scholar 

  26. S. Sanguinetti, C. Somaschini, S. Bietti, N. Koguchi, Nanomater. Nanotech. 1, 14 (2011)

    Google Scholar 

  27. I. Shorubalko, A. Pfund, R. Leturcq, M.T. Borgstörm, F. Gramm, E. Müller, E. Gini, K. Ensslin, Nanotechnology 18, 044014 (2007)

    Article  ADS  Google Scholar 

  28. C. Somaschini, S. Bietti, N. Koguchi, S. Sanguinetti, Appl. Phys. Lett. 97, 203109 (2010)

    Article  ADS  Google Scholar 

  29. L.G.G.V.D. da Silva, J.M. Villas-Bôas, S.E. Ulloa, Phys. Rev. B 76, 155306 (2007)

    Article  ADS  Google Scholar 

  30. Y.Y. Wang, M.W. Wu, Phys. Rev. B 74, 165312 (2006)

    Article  ADS  Google Scholar 

  31. M. Raith, P. Stano, J. Fabian, Phys. Rev. B 83, 195318 (2011)

    Article  ADS  Google Scholar 

  32. E. Zipper, M. Kurpas, M. Maśka, New J. Phys. 14, 093029 (2012)

    Article  ADS  Google Scholar 

  33. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  34. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Nature 432, 81 (2004)

    Article  ADS  Google Scholar 

  35. K.S. Virk, D.R. Reichman, M.S. Hybertsen, Phys. Rev. B 86, 165332 (2012)

    Article  ADS  Google Scholar 

  36. T.H. Stievater, X. Li, T. Cubel, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, Appl. Phys. Lett. 81, 4251 (2002)

    Article  ADS  Google Scholar 

  37. R. Hanson, D.D. Awschalom, Nature 453, 1043 (2008)

    Article  ADS  Google Scholar 

  38. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brienl, Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  39. M. Abbarchi, C.A. Mastrandrea, A. Vinattieri, S. Sanguinetti, T. Mano, T. Kuroda, N. Koguchi, K. Sakoda, M. Gurioli, Phys. Rev. B 79, 085308 (2009)

    Article  ADS  Google Scholar 

  40. M. Kurpas, E. Zipper, Eur. Phys. J. D 50, 201 (2008)

    Article  ADS  Google Scholar 

  41. R.A. Żak, B. Röthlisberger, S. Chesi, D. Loss, Riv. Nuovo Cimento 33, 7 (2010)

    Google Scholar 

  42. A.V. Khaetskii, Y.V. Nazarov, Phys. Rev. B 64, 125316 (2001)

    Article  ADS  Google Scholar 

  43. P. Stano, J. Fabian, Phys. Rev. B 72, 155410 (2005)

    Article  ADS  Google Scholar 

  44. J. Dreiser, M. Atatüre, C. Galland, T. Müller, A. Badolato, A. Imamoglu, Phys. Rev. B 77, 075317 (2008)

    Article  ADS  Google Scholar 

  45. P. Stano, J. Fabian, Phys. Rev. B 74, 045320 (2006)

    Article  ADS  Google Scholar 

  46. P. Stano, J. Fabian, Phys. Rev. Lett. 96, 186602 (2006)

    Article  ADS  Google Scholar 

  47. L.M. Woods, T.L. Reinecke, Y. Lyanda-Geller, Phys. Rev. B 66, 161318(R) (2002)

    Article  ADS  Google Scholar 

  48. W. Yao, R.-B. Liu, L.J. Scham, Phys. Rev. B 74, 195301 (2006)

    Article  ADS  Google Scholar 

  49. H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby. arXiv:1005.2995

  50. X. Xu, W. Yao, B. Sun, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Nature 459, 1105 (2009)

    Article  ADS  Google Scholar 

  51. G. Giedke, J.M. Taylor, D. D’Alessandro, M.D. Lukin, A. Imamoglu, Phys. Rev. A 74, 032316 (2006)

    Article  ADS  Google Scholar 

  52. E.I. Gryncharova, V.I. Perel, Sov. Phys. Semicond. 11, 997 (1977)

    Google Scholar 

  53. D. Brunner, B.D. Geradot, P.A. Dalgarno, G. Wuest, K. Karrai, N.G. Stolz, P.M. Petroff, R.J. Warburton, Science 325, 70 (2009)

    Article  ADS  Google Scholar 

  54. F. Kuemmeth, S. Ilani, D.C. Ralph, P.L. McEuen, Nature 452, 448 (2008)

    Article  ADS  Google Scholar 

  55. B. Trauzettel, D.V. Bulayev, D. Loss, G. Burkhard, Nat. Phys. 3, 192 (2007)

    Article  Google Scholar 

  56. C.-H. Lee, C.W. Liu, H.-T. Chang, S.W. Lee, J. Appl. Phys. 107, 056103 (2010)

    Article  ADS  Google Scholar 

  57. A.M. Tyryshkin, S.A. Lyon, A.V. Astashkin, A.M. Raitsimring, Phys. Rev. B 68, 193207 (2003)

    Article  ADS  Google Scholar 

  58. R. de Sousa, S. Das Sarma, Phys. Rev. B 68, 115322 (2003)

    Article  ADS  Google Scholar 

  59. W. Jantsch, Z. Wilamowski, N. Sanderfeld, M. Muhlberger, F. Schaffler, Physica E 13, 504 (2002)

    Article  ADS  Google Scholar 

  60. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 92, 076401 (2004)

    Article  ADS  Google Scholar 

  61. G. Balasubramanian et al., Nat. Mater. 8, 383 (2009)

    Article  ADS  Google Scholar 

  62. T.D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. B 71, 014401 (2005)

    Article  ADS  Google Scholar 

  63. M. Ciurla, J. Adamowski, B. Szafran, S. Bednarek, Physica E 15, 261 (2002)

    Article  ADS  Google Scholar 

  64. K. Lis, S. Bednarek, B. Szafran, J. Adamowski, Physica E 17, 494 (2003)

    Article  ADS  Google Scholar 

  65. N.B. Zhitenev, M. Brodsky, R.C. Ashoori, L.N. Pfeiffer, K.W. West, Science 285, 715 (1999)

    Article  Google Scholar 

  66. B. Szafran, F.M. Peeters, S. Bednarek, Phys. Rev. B 70, 125310 (2004)

    Article  ADS  Google Scholar 

  67. M. Bayer, S.N. Walck, T.L. Reinecke, A. Forchel, Phys. Rev. B 57, 6584 (1998)

    Article  ADS  Google Scholar 

  68. V. Halonen, P. Pietiläinen, T. Chakraborty, Europhys. Lett. 33, 377 (1996)

    Article  ADS  Google Scholar 

  69. V. Milanovic, Z. Ikonic, Phys. Rev. B 39, 7982 (1989)

    Article  ADS  Google Scholar 

  70. V. Bondarenko, Y. Zhao, J. Phys. Condens. Matter 15, 1377 (2003)

    Article  ADS  Google Scholar 

  71. C.A. StaEord, S. Das Sarma, Phys. Rev. Lett. 72, 3590 (1994)

    Article  ADS  Google Scholar 

  72. L.P. Kouwenhoven et al., Phys. Rev. Lett. 65, 361 (1990)

    Article  ADS  Google Scholar 

  73. R.J. Hsug, J.M. Hong, K.Y. Lee, Surf. Sci. 263, 415 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.M.M. and M.K. acknowledges support from the Foundation for Polish Science under the “TEAM” program for the years 2011–2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej M. Maśka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurpas, M., Zipper, E., Maśka, M.M. (2014). Engineering of Electron States and Spin Relaxation in Quantum Rings and Quantum Dot-Ring Nanostructures. In: Fomin, V. (eds) Physics of Quantum Rings. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39197-2_18

Download citation

Publish with us

Policies and ethics