Advertisement

Gathering the Users’ Needs in the Development of Assistive Technology: A Blind Navigation System Use Case

  • Hugo Paredes
  • Hugo Fernandes
  • Paulo Martins
  • João Barroso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8011)

Abstract

Assistive technology enables people to achieve independence in the accomplishment of their daily tasks and enhance their quality of life. However, the development os assistive technology does not always follow user needs and expectations, comprising their usability and effectiveness. This paper discusses the design and evaluation strategies for assistive technologies applied to a blind navigation system case study. The research carried out focused on the gathering of user requirements for ensuring enhanced autonomy of blind people in their daily life. The picked requirements were used in an architecture that unifies the benefits of a redundant blind navigation system with a set of services that are provided by daily used information and communication technologies. The system combines guidance, navigation and information gathering, extending traditional aids with realtime knowledge of the surrounding environment to provide an enhanced assistive tool for autonomy of the blinds. Moreover, the developed solution fills the gap of existing solutions that require the users to carry a wide range of devices and, mostly, do not include mechanisms to ensure the autonomy of users in the event of system failure.

Keywords

usability evaluation interviews blindness assistive technology navigation autonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    du Buf, J.H., Barroso, J., Rodrigues, J.M., Paredes, H., Farrajota, M., Fernandes, H., ao José, J., Teixeira, V., Saleiro, M.: The smartvision navigation prototype for blind users. JDCTA 5(5), 351–361 (2011)CrossRefGoogle Scholar
  2. 2.
    Burnard, P.: A method of analysing interview transcripts in qualitative research. Nurse Education Today 11(6), 461–466 (1991)CrossRefGoogle Scholar
  3. 3.
    Chen, J., Li, Z., Dong, M., Wang, X.: Blind path identification system design base on rfid. In: 2010 International Conference on Electrical and Control Engineering (ICECE), pp. 548–551 (June 2010)Google Scholar
  4. 4.
    Choi, Y.M., Sprigle, S.H.: Approaches for Evaluating the Usability of Assistive Technology Product Prototypes. Assistive Technology 23, 36–41 (2011)CrossRefGoogle Scholar
  5. 5.
    Ding, B., Yuan, H., Zang, X., Jiang, L.: The research on blind navigation system based on rfid. In: International Conference on Wireless Communications, Networking and Mobile Computing, WiCom 2007, pp. 2058–2061 (2007)Google Scholar
  6. 6.
    Dix, A., Finlay, J.E., Abowd, G.D., Beale, R.: Human-Computer Interaction, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2003)Google Scholar
  7. 7.
    Edyburn, D.: Rethinking assistive technology. Special Education Technology Practice 5(4), 16–23 (2004)Google Scholar
  8. 8.
    Faria, J., Lopes, S., Fernandes, H., Martins, P., Barroso, J.: Electronic white cane for blind people navigation assistance. In: World Automation Congress (WAC), pp. 1–7 (September 2010)Google Scholar
  9. 9.
    Fernandes, H., Conceição, N., Paredes, H., Pereira, A., Araújo, P., Barroso, J.: Providing accessibility to blind people using gis. Universal Access in the Information Society 11(4), 399–407 (2012)CrossRefGoogle Scholar
  10. 10.
    Fernandes, H., Faria, J., Paredes, H., Barroso, J.A.: An integrated system for blind day-to-day life autonomy. In: The Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2011, pp. 225–226. ACM, New York (2011)CrossRefGoogle Scholar
  11. 11.
    Greenberg, S., Buxton, B.: Usability evaluation considered harmful (some of the time). In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2008, pp. 111–120. ACM, New York (2008)Google Scholar
  12. 12.
    Hub, A., Diepstraten, J., Ertl, T.: Design and development of an indoor navigation and object identification system for the blind. In: Proceedings of the 6th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2004, pp. 147–152. ACM, New York (2004)Google Scholar
  13. 13.
    Jacquet, C., Bellik, Y., Bourda, Y.: Electronic locomotion aids for the blind: Towards more assistive systems. In: Ichalkaranje, N., Ichalkaranje, A., Jain, L.C. (eds.) Intelligent Paradigms for Assistive and Preventive Healthcare. SCI, vol. 19, pp. 133–163. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kitsas, I.K., Panoulas, K.J., Kosmidou, V.E., Taplidou, S.A., Saragiotis, C.D., Hadjileontiadis, L.J., Panas, S.M.: Smarteyes: An efficient mobile phone/navigator for blind or visually impaired people. In: Proceedings of the Forum for the ICT Professionals Congress, FITCE 2006 (2006)Google Scholar
  15. 15.
    Na, J.: The blind interactive guide system using rfid-based indoor positioning system. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 1298–1305. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Phillips, B., Zhao, H.: Predictors of assistive technology abandonment. Assistive Technology: the Official Journal of Resna 5(1), 36–45 (1993)CrossRefGoogle Scholar
  17. 17.
    Poláček, O., Grill, T., Tscheligi, M.: Towards a navigation system for blind people: a wizard of oz study. SIGACCESS Access. Comput. 104, 12–29 (2012)CrossRefGoogle Scholar
  18. 18.
    Pressl, B., Wieser, M.: A computer-based navigation system tailored to the needs of blind people. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 1280–1286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Sánchez, J., Elías, M.: Guidelines for designing mobility and orientation software for blind children. In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 375–388. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Schmitz, B., Hub, A.: Combination of the Navigation System TANIA with RFID-Based Initialization and Object Recognition, p. 2 (2009), http://www.icevi-europe.org/dublin2009/index.html
  21. 21.
    Stickel, M.S., Ryan, S., Rigby, P.J., Jutai, J.W.: Toward a comprehensive evaluation of the impact of electronic aids to daily living: Evaluation of consumer satisfaction. Disability and Rehabilitation: An International, Multidisciplinary Journal 24(1-3), 115–125 (2002)CrossRefGoogle Scholar
  22. 22.
    Vredenburg, K., Mao, J.Y., Smith, P.W., Carey, T.: A survey of user-centered design practice. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2002, pp. 471–478. ACM, New York (2002)Google Scholar
  23. 23.
    Wengraf, T.: Qualitative research interviewing: biographic narrative and semi-structured methods. Sage, London (2001)Google Scholar
  24. 24.
    Willis, S., Helal, S.: Rfid information grid for blind navigation and wayfinding. In: Proceedings of the Ninth IEEE International Symposium on Wearable Computers, ISWC 2005. IEEE Computer Society, Washington, DC (2005)Google Scholar
  25. 25.
    Witzel, A.: The problem-centered interview. Forum Qualitative Sozialforschung / Forum: Qualitative Social Research 1(1) (2000)Google Scholar
  26. 26.
    Zhang, J., Ong, S.K., Nee, A.Y.C.: Navigation systems for individuals with visual impairment: a survey. In: Proceedings of the 2nd International Convention on Rehabilitation Engineering & Assistive Technology, iCREATe 2008, Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre, Kaki Bukit TechPark II, Singapore, pp. 159–162 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hugo Paredes
    • 1
  • Hugo Fernandes
    • 1
  • Paulo Martins
    • 1
  • João Barroso
    • 1
  1. 1.INESC TEC (formerly INESC Porto) and University of Trás-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations