Design for Adapted Devices: An Evaluation Tool of Smart Things for Seniors

  • Javier Barcenilla
  • Charles Tijus
  • Djamel Aissaoui
  • Eric Brangier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8011)


In addition to usual Information and Communication Technology (ICT) devices, things such as clothes and homes are becoming smart and can be used for specific aging needs. However, because there is a diversity of senior impairments, one must diagnose needs, expectations or skills of seniors in order to provide the best adapted functions and usages. This study is about how to choose the best care method for seniors by providing a diagnosis based on a tool called “Design for Adapted Devices” (DAD). DAD tries to develop adaptable systems based on the comprehensive diagnosis of human deficits and needs of future users, taking into account the aspects of the individual’s activity. DAD takes into account several dimensions of user diversity like skills and abilities (motor, cognitive skills, etc.) and measures deficits that modulate users’ performances (social support, experience, etc.). Applied to seniors, DAD gives prospective data to define future smart things.


Universal design senior needs smart things impairments diagnosis 


  1. 1.
    O’Connel, T.A.: The why and how of senior-focus design. In: Lazar, J. (ed.) Universal Design: Designing Computer Interfaces for Diverse Users, pp. 43–92. Halsted Press, New York (2008)Google Scholar
  2. 2.
    Haddon, L., Paul, G.: Design in the ICT Industry: The role of users. In: Coombs, R., Green, K., Richards, A., Walsh, V. (eds.) Technology and the Market: Demand, Users and Innovation, pp. 201–215. Edward Elgar Publishing, Cheltenham (2001)Google Scholar
  3. 3.
    Vandi, C., Rico-Duarte, L., Thibault, T., Rougeaux, M., Tijus, C.: Seniors et Tablettes Interactives. Livre Blanc de la Délégation aux Usages de l’Internet (2011)Google Scholar
  4. 4.
    Emiliani, L.: Perspectives on accessibility: from assistive technologies to universal access and design for all. In: Stephanidis, C. (ed.) The Universal Access Handbook, ch. 2, CRC Press (2009)Google Scholar
  5. 5.
    Erlandson, M.F.: Universal and accessible design for products, services and processes. CRC Press, Boca Raton (2008)Google Scholar
  6. 6.
    Jacko, J.A., Leonard, V.K., Scott, I.U.: Perceptual impairments: New advancements promoting technological access. In: Sears, A., Jacko, J.A. (eds.) Human Computer Interaction: Designing for Diverse Users and Domains. Taylor & Francis, Basel (2009)Google Scholar
  7. 7.
    Lazar, J.: Universal design: Designing computer interfaces for diverse users. Halsted Press, New York (2008)Google Scholar
  8. 8.
    Pirkl, J.J.: Transgenerational design: products for an aging population. Van Nostrand Reinhold, New York (1994)Google Scholar
  9. 9.
    Tijus, C., Barcenilla, J., Vandi, C.: Challenges and Ethical Issues in Living Labs for Open Innovation. In: Proceeding of the Challenges e-2012 Conference, Lisbon, Portugal (2012)Google Scholar
  10. 10.
    Robert, J.-M., Brangier, E.: Prospective Ergonomics: Origin, Goal, and Prospects. Work (Reading, Mass.) 41, 5235–5242 (2012)Google Scholar
  11. 11.
    Ashok, M., Jacko, J.: Dimensions of user diversity. In: Stephanidis, C. (ed.) The Universal Access Handbook, ch. 4, CRC Press (2009)Google Scholar
  12. 12.
    Lewis, C.: Cognitive disabilities. In: Stephanidis, C. (ed.) The Universal Access Handbook, ch. 7. CRC Press (2009)Google Scholar
  13. 13.
    Czaja, S.J., Charness, N., Fisk, A.D., Hertzog, C., Nair, S.N., Rogers, W.A., Sharit, J.: Factors predicting the use of technology: Findings from the center for research and education on aging and technology enhancement. Psychology and Aging 21(2), 333–352 (2006)CrossRefGoogle Scholar
  14. 14.
    Hirsch, T., Forlizzi, J., Hyder, E., Goetz, J., Stroback, J., Kurtz, C.: The ELDer project: Social, emotional, and environmental factors in the design of eldercare technologies. In: Proceedings of the Conference on Universal Usability, pp. 72–79. ACM Press (2000)Google Scholar
  15. 15.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47(6), 381–391 (1954)CrossRefGoogle Scholar
  16. 16.
    Gibson, J.J.: The ecological approach to visual perception. Lawrence Erlbaum Associates, Hillsdale (1986)Google Scholar
  17. 17.
    Treisman, A., Sato, S.: Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance 16, 459–478 (1990)CrossRefGoogle Scholar
  18. 18.
    Tijus, C.: Résoudre des tâches en contexte: l’affordance comme phénomène de pop out. In: Bastien, J.M.C. (ed.) Actes Des Deuxièmes Journées D’étude En Psychologie Ergonomique, EPIQUE 2003, Boulogne Billancourt, Octobre 2-3, pp. 295–302. INRIA, Rocquencourt (2003)Google Scholar
  19. 19.
    Léger, L., Tijus, C.: L’effet de l’hétérogénéité sémantique dans la détection de mots. Psychologie Française 52, 367–385 (2007)CrossRefGoogle Scholar
  20. 20.
    Brangier, E., Bornet, C.: Persona: A method to produce representations focused on consumers’ needs. In: Karwowski, W., Soares, M., Stanton, N. (eds.) Human Factors and Ergonomics in Consumer Product Design, pp. 38–61. Taylor and Francis (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Javier Barcenilla
    • 1
  • Charles Tijus
    • 2
  • Djamel Aissaoui
    • 1
  • Eric Brangier
    • 1
  1. 1.PErSEUs, Ux Lab. Île du SaulcyUniversité de Lorraine - MetzMetzFrance
  2. 2.CHArt-LUTINCité des Sciences et de l’IndustrieParisFrance

Personalised recommendations