Mental Models of Verifiability in Voting

  • Maina M. Olembo
  • Steffen Bartsch
  • Melanie Volkamer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7985)


In order for voters to verify their votes, they have to carry out additional steps besides selecting a candidate and submitting their vote. In previous work, voters have been found to be confused about the concept of and motivation for verifiability in electronic voting when confronted with it. In order to better communicate verifiability to voters, we identify mental models of verifiability in voting using a questionnaire distributed online in Germany. The identified mental models are, Trusting, No Knowledge, Observer, Personal Involvement and Matching models. Within the same survey, we identify terms that can be used in place of ‘verify’ as well as security-relevant metaphors known to the voters that can be used to communicate verifiability.


Mental Models Verifiability Internet Voting Voting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Microsoft: Forsa-Umfrage: Jeder zweite würde online wählen. Digitale Technologien stärken die Demokratie. Bürgerbeteiligung über das Internet fördert Vertrauen in die Politik (2013), (accessed March 22, 2013)
  2. 2.
    Simons, B., Jones, D.W.: Internet voting in the U.S. Communications of the ACM 55(10), 68–77 (2012)CrossRefGoogle Scholar
  3. 3.
    Sherman, A.T., Carback, R., Chaum, D., Clark, J., Essex, A., Herrnson, P.S., Mayberry, T., Stefan, P., Rivest, R.L., Shen, E., Sinha, B., Vora, P.: Scantegrity Mock Election at Takoma Park. In: Electronic Voting 2010 (EVOTE 2010), pp. 45–61 (2010)Google Scholar
  4. 4.
    Karayumak, F., Kauer, M., Olembo, M.M., Volk, T., Volkamer, M.: User Study of the Improved Helios Voting System Interface. In: Socio-Technical Aspects in Security and Trust (STAST), pp. 37–44. IEEE (2011)Google Scholar
  5. 5.
    Schneider, S., Llewellyn, M., Culnane, C., Heather, J., Srinivasan, S., Xia, Z.: Focus Group Views on Prêt à Voter 1.0. In: International Workshop on Requirements Engineering for Electronic Voting Systems (2011)Google Scholar
  6. 6.
    Langer, L., Schmidt, A., Buchmann, J., Volkamer, M.: A Taxonomy Refining the Security Requirements for Electronic Voting: Analyzing Helios as a Proof of Concept. In: International Conference on Availability, Reliability, and Security, ARES 2010, pp. 475–480. IEEE (2010)Google Scholar
  7. 7.
    Krimmer, R., Volkamer, M.: Bits or Paper? Comparing Remote Electronic Voting to Postal Voting. In: Andersen, K., Grönlund, A., Traunmüller, R., Wimmer, M. (eds.) Workshop and Poster Proceedings of the Fourth International EGOV Conference, pp. 225–232 (2005)Google Scholar
  8. 8.
    Demirel, D., Henning, M., Ryan, P.Y.A., Schneider, S., Volkamer, M.: Feasibility Analysis of Prêt à Voter for German Federal Elections. In: Kiayias, A., Lipmaa, H. (eds.) VoteID 2011. LNCS, vol. 7187, pp. 158–173. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Storer, T., Little, L., Duncan, I.: An Exploratory Study of Voter Attitudes Towards a Pollsterless Remote Voting System. In: Chaum, D., Rivest, R., Ryan, P.Y.A. (eds.) IaVoSS Workshop on Trustworthy Elections (WOTE 2006) Pre-Proceedings, pp. 77–86 (2006)Google Scholar
  10. 10.
    Campbell, B.A., Byrne, M.D.: Straight-Party Voting: What Do Voters Think? IEEE Transactions on Information Forensics and Security 4(4), 718–728 (2009)CrossRefGoogle Scholar
  11. 11.
    Yao, Y., Murphy, L.: Remote Electronic Voting Systems: An Exploration of Voters’ Perceptions and Intention to Use. European Journal of Information Systems 16(2), 106–120 (2007)CrossRefGoogle Scholar
  12. 12.
    Raja, F., Hawkey, K., Beznosov, K.: Revealing Hidden Context: Improving Mental Models of Personal Firewall Users. In: Proceedings of the 5th Symposium on Usable Privacy and Security, SOUPS 2009 (2009)Google Scholar
  13. 13.
    Almuhimedi, H., Bhan, A., Mohindra, D., Sunshine, J.S.: Toward Web Browsers that Make or Break Trust. In: Proceedings of the Sixth Symposium on Usable Privacy and Security, SOUPS 2008 (2008)Google Scholar
  14. 14.
    Raja, F., Hawkey, K., Jaferian, P., Beznosov, K., Booth, K.S.: It’s Too Complicated, So I turned It Off!: Expectations, Perceptions, and Misconceptions of Personal Firewalls. In: Proceedings of the 3rd ACM Workshop on Assurable and Usable Security Configuration, SafeConfig 2010, pp. 53–62 (2010)Google Scholar
  15. 15.
    Friedman, B., Hurley, D., Howe, D.C., Felten, E., Nissenbaum, H.: Users’ Conceptions of Web Security: A Comparative Study. In: Extended Abstracts on Human Factors in Computing Systems, CHI EA 2002, pp. 746–747. ACM (2002)Google Scholar
  16. 16.
    Ho, J.T., Dearman, D., Truong, K.N.: Improving Users’ Security Choices on Home Wireless Networks. In: Symposium of Usable Privacy and Security, SOUPS 2010 (2010)Google Scholar
  17. 17.
    Wash, R.: Folk Models of Home Computer Security. In: Proceedings of the Sixth Symposium on Usable Privacy and Security, SOUPS 2010 (2010)Google Scholar
  18. 18.
    Dourish, P., Grinter, B., Delgado de la Flor, J., Joseph, M.: Security in the wild: User Strategies for Managing Security as an Everyday, Practical Problem. Personal and Ubiquitious Computing 8(6), 391–401 (2004)CrossRefGoogle Scholar
  19. 19.
    Camp, L.J.: Mental models of computer security. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 106–111. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Camp, L.: Mental Models of Privacy and Security. IEEE Technology and Society Magazine 28(3), 37–46 (2009)CrossRefGoogle Scholar
  21. 21.
    Asgharpour, F., Liu, D., Camp, L.J.: Mental Models of Computer Security Risks. In: Workshop on the Economics of Information Security (2007)Google Scholar
  22. 22.
    Liu, D., Asgharpour, F., Camp, L.J.: Risk Communication in Security Using Mental Models. In: Usable Security (2008)Google Scholar
  23. 23.
    Camp, J., Asgharpour, F., Liu, D.: Risk Communication in Computer Security Using Mental Models. In: Workshop on the Economics of Information Security, WEIS 2007 (2007)Google Scholar
  24. 24.
    Bravo-Lillo, C., Cranor, L.F., Downs, J.S., Komanduri, S.: Bridging the Gap in Computer Security Warnings: A Mental Model Approach. IEEE Security and Privacy 9(2), 18–26 (2011)CrossRefGoogle Scholar
  25. 25.
    Charmaz, K.: Constructing Grounded Theory: A Practical Guide through Qualitative Analysis, 1st edn. Sage Publications Limited (2006)Google Scholar
  26. 26.
    Andrews, D., Nonnecke, B., Preece, J.: Conducting Research on the Internet: Online Survey Design, Development and Implementation Guidelines. International Journal of Human-Computer Interaction 16(2), 185–210 (2003)CrossRefGoogle Scholar
  27. 27.
    Oppenheim, A.N.: Questionnaire Design, Interviewing and Attitude Measurement. Continuum (2000)Google Scholar
  28. 28.
    Wright, K.B.: Researching Internet-based Populations: Advantages and Disadvantages of Online Survey Research, Online Questionnaire Authoring Software Packages, and Web Survey Services. Journal of Computer-Mediated Communication 10 (2005)Google Scholar
  29. 29.
    Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer Interaction. John Wiley and Sons (2010)Google Scholar
  30. 30.
    Guest, G., Bunce, A., Johnson, L.: How many interviews are enough? An experiment with data saturation and variability. Field Methods 18(1), 59–82 (2006)CrossRefGoogle Scholar
  31. 31.
    Karayumak, F., Michaela, K., Maina, O., Melanie, V.: Usability Analysis of Helios - An Open Source Verifiable Remote Electronic Voting System. In: Proceedings of the 2011 USENIX Electronic Voting Technology Workshop/Workshop on Trustworthy Elections. USENIX (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maina M. Olembo
    • 1
  • Steffen Bartsch
    • 1
  • Melanie Volkamer
    • 1
  1. 1.Center for Advanced Security ResearchTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations