Skip to main content

Electromagnetic Design Automation: Surrogate Model Assisted Evolutionary Algorithm

  • Chapter
  • First Online:
Automated Design of Analog and High-frequency Circuits

Part of the book series: Studies in Computational Intelligence ((SCI,volume 501))

  • 1364 Accesses

Abstract

Chapter 7 reviews surrogate model assisted evolutionary algorithms and the application area: design automation of mm-wave integrated circuits and complex antennas. Two machine learning methods, Gaussian process and artificial neural networks are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are also simple GP modeling and blind GP modeling [49].

References

  1. Ohmori S, Yamao Y, Nakajima N (2000) The future generations of mobile communications based on broadband access technologies. IEEE Commun Mag 38(12):134–142

    Article  Google Scholar 

  2. Niknejad A, Hashemi H (2008) mm-Wave silicon technology: 60 GHz and beyond. Springer, New York

    Google Scholar 

  3. Nieuwoudt A, Massoud Y (2006) Variability-aware multilevel integrated spiral inductor synthesis. IEEE Trans Comput-Aided Des Integr Circuits Syst 25(12):2613–2625

    Article  Google Scholar 

  4. Mandal S, Goyel A, Gupta A (2009) Swarm optimization based on-chip inductor optimization. In: Proceedings of 4th international conference on computers and devices for, communication, Kolkata, India, pp 1–4 December 2009

    Google Scholar 

  5. Mandal S, Sural S, Patra A (2008) ANN-and PSO-based synthesis of on-chip spiral inductors for RF ICs. IEEE Trans Comput-Aided Des Integr Circuits Syst 27(1):188–192

    Article  Google Scholar 

  6. Koziel S (2009) Surrogate-based optimization of microwave structures using space mapping and kriging. In: Proceedings of European microwave conference, pp 1062–1065

    Google Scholar 

  7. Bandler J, Cheng Q, Dakroury S, Mohamed A, Bakr M, Madsen K, Sondergaard J (2004) Space mapping: the state of the art. IEEE Trans Microw Theory Tech 52(1):337–361

    Article  Google Scholar 

  8. Koziel S, Bandler J (2008) Space mapping with multiple coarse models for optimization of microwave components. IEEE Microw Wire Compon Lett 18(1):1–3

    Article  Google Scholar 

  9. Rayas-Sánchez J (2004) EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Trans Microw Theory Tech 52(1):420–435

    Article  Google Scholar 

  10. Koziel S, Bandler J (2007) Space-mapping optimization with adaptive surrogate model. IEEE Trans Microw Theory Tech 55(3):541–547

    Article  Google Scholar 

  11. Allstot D, Choi K, Park J (2003) Parasitic-aware optimization of CMOS RF circuits. Springer, Netherlands

    Google Scholar 

  12. Choi K, Allstot D (2006) Parasitic-aware design and optimization of a CMOS RF power amplifier. IEEE Trans Circuits Syst I Regul Pap 53(1):16–25

    Article  Google Scholar 

  13. Tulunay G, Balkir S (2008) A synthesis tool for CMOS RF low-noise amplifiers. IEEE Trans Comput-Aided Des Integr Circuits Syst 27(5):977–982

    Article  Google Scholar 

  14. Ramos J, Francken K, Gielen G, Steyaert M (2005) An efficient, fully parasitic-aware power amplifier design optimization tool. IEEE Trans Circuits Syst I Regul Pap 52(8):1526–1534

    Article  Google Scholar 

  15. Agarwal A, Vemuri R (2005) Layout-aware RF circuit synthesis driven by worst case parasitic corners. In: Proceedings of IEEE international conference on computer design: VLSI in computers and processors, pp 444–449

    Google Scholar 

  16. Zhang G, Dengi A, Rohrer R, Rutenbar R, Carley L (2004) A synthesis flow toward fast parasitic closure for radio-frequency integrated circuits. In: Proceedings of the 41st annual design automation conference, pp 155–158

    Google Scholar 

  17. De Ranter C, Van der Plas G, Steyaert M, Gielen G, Sansen W (2002) CYCLONE: automated design and layout of RF LC-oscillators. IEEE Trans Comput-Aided Des Integr Circuits Syst 21(10):1161–1170

    Article  Google Scholar 

  18. Chu M, Allstot D (2005) Elitist nondominated sorting genetic algorithm based RF IC optimizer. IEEE Trans Circuits Syst I Regul Pap 52(3):535–545

    Article  MathSciNet  Google Scholar 

  19. Park J, Choi K, Allstot D (2003) Parasitic-aware design and optimization of a fully integrated CMOS wideband amplifier. In: Proceedings of Asia and South Pacific design automation conference, pp 904–907

    Google Scholar 

  20. Hoorfar A (2007) Evolutionary programming in electromagnetic optimization: a review. IEEE Trans Antennas Propag 55(3):523–537

    Article  Google Scholar 

  21. Rocca P, Oliveri G, Massa A (2011) Differential evolution as applied to electromagnetics. IEEE Antennas Propag Mag 53(1):38–49

    Article  Google Scholar 

  22. Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag 52(2):397–407

    Article  MathSciNet  Google Scholar 

  23. Pantoja M, Bretones A, Martín R (2007) Benchmark antenna problems for evolutionary optimization algorithms. IEEE Trans Antennas Propag 55(4):1111–1121

    Article  Google Scholar 

  24. Liu W (2005) Design of a multiband CPW-fed monopole antenna using a particle swarm optimization approach. IEEE Trans Antennas Propag 53(10):3273–3279

    Article  Google Scholar 

  25. Yeung S, Man K, Luk K, Chan C (2008) A trapeizform U-slot folded patch feed antenna design optimized with jumping genes evolutionary algorithm. IEEE Trans Antennas Propag 56(2):571–577

    Article  Google Scholar 

  26. Goudos S, Siakavara K, Samaras T, Vafiadis E, Sahalos J (2011) Self-adaptive differential evolution applied to real-valued antenna and microwave design problems. IEEE Trans Antennas Propag 99:1286–1298

    Article  Google Scholar 

  27. Gregory M, Bayraktar Z, Werner D (2011) Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy. IEEE Trans Antennas Propag 59(4):1275–1285

    Article  Google Scholar 

  28. Jin N, Rahmat-Samii Y (2007) Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations. IEEE Trans Antennas Propag 55(3):556–567

    Article  Google Scholar 

  29. Goudos S, Zaharis Z, Kampitaki D, Rekanos I, Hilas C (2009) Pareto optimal design of dual-band base station antenna arrays using multi-objective particle swarm optimization with fitness sharing. IEEE Trans Magn 45(3):1522–1525

    Article  Google Scholar 

  30. John M, Ammann M (2009) Antenna optimization with a computationally efficient multiobjective evolutionary algorithm. IEEE Trans Antennas Propag 57(1):260–263

    Article  Google Scholar 

  31. Knowles J (2006) ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans Evol Comput 10(1):50–66

    Article  Google Scholar 

  32. Siah E, Sasena M, Volakis J, Papalambros P, Wiese R (2004) Fast parameter optimization of large-scale electromagnetic objects using DIRECT with kriging metamodeling. IEEE Trans Microw Theory Tech 52(1):276–285

    Article  Google Scholar 

  33. Jones D, Schonlau M, Welch W (1998) Efficient global optimization of expensive black-box functions. J Global optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  34. Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput-A Fus Found Methodol Appl 9(1):3–12

    Google Scholar 

  35. Emmerich M, Giannakoglou K, Naujoks B (2006) Single-and multiobjective evolutionary optimization assisted by gaussian random field metamodels. IEEE Trans Evol Comput 10(4):421–439

    Article  Google Scholar 

  36. Giannakoglou K (2002) Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Prog Aerosp Sci 38(1):43–76

    Article  Google Scholar 

  37. Ong Y, Lum K, Nair P (2008) Hybrid evolutionary algorithm with hermite radial basis function interpolants for computationally expensive adjoint solvers. Comput Optim Appl 39(1):97–119

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang Q, Liu W, Tsang E, Virginas B (2010) Expensive multiobjective optimization by MOEA/D with gaussian process model. IEEE Trans Evol Comput 14(3):456–474

    Article  Google Scholar 

  39. Voutchkov I, Keane A (2010) Multi-objective optimization using surrogates. Comput Intell Optim 7:155–175

    Google Scholar 

  40. Jin Y, Olhofer M, Sendhoff B (2002) A framework for evolutionary optimization with approximate fitness functions. IEEE Trans Evol Comput 6(5):481–494

    Article  Google Scholar 

  41. Jones D (2001) A taxonomy of global optimization methods based on response surfaces. J Global Optim 21(4):345–383

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu B, Zhao D, Reynaert P, Gielen G (2011) Synthesis of integrated passive components for high-frequency RF ICs based on evolutionary computation and machine learning techniques. IEEE Trans Comput-Aided Des Integr Circ Syst 30(10):1458–1468

    Google Scholar 

  43. Lim D, Jin Y, Ong Y, Sendhoff B (2010) Generalizing surrogate-assisted evolutionary computation. IEEE Trans Evol Comput 14(3):329–355

    Article  Google Scholar 

  44. Zhou Z, Ong Y, Nair P, Keane A, Lum K (2007) Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Trans Syst Man Cybern Part C Appl Rev 37(1):66–76

    Article  Google Scholar 

  45. Liu B, Zhang Q, Gielen G (2013) A gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive black box optimization problems. IEEE, Trans Evol Comput (To be published)

    Google Scholar 

  46. Rasmussen C (2004) Gaussian processes in machine learning. Adv Lect Mach Learn 3176:63–71

    Google Scholar 

  47. Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423

    Article  MathSciNet  MATH  Google Scholar 

  48. Wasserman P (1989) Neural computing: theory and practice. Van Nostrand Reinhold Co. 21(3):2–7, Sep 1989

    Google Scholar 

  49. Couckuyt I, Forrester A, Gorissen D, De Turck F, Dhaene T (2012) Blind kriging: implementation and performance analysis. Adv Eng Softw 49:1–13

    Article  Google Scholar 

  50. Ackermann E, De Villiers J, Cilliers P (2011) Nonlinear dynamic systems modeling using gaussian processes: predicting ionospheric total electron content over south africa. J Geophys Res 116:A10,303

    Google Scholar 

  51. Buche D, Schraudolph N, Koumoutsakos P (2005) Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Trans Syst Man Cybern Part C Appl Rev 35(2):183–194

    Article  Google Scholar 

  52. Lophaven S, Nielsen H, Søndergaard J (2002) DACE: A Matlab kriging toolbox. Citeseer. http://www2.imm.dtu.dk/~hbni/dace

  53. Krishnaiah P (1988) Handbook of statistics. Motilal Banarsidass Publishers, Springer Netherlands, North-Holland

    Google Scholar 

  54. Dennis J, Torczon V (1997) Managing approximation models in optimization. In: Multidisciplinary design optimization: State-of-the-art. SIAM, Philadelphia, pp 330–347

    Google Scholar 

  55. Gorissen D, Couckuyt I, Demeester P, Dhaene T, Crombecq K (2010) A surrogate modeling and adaptive sampling toolbox for computer based design. J Mach Learn Res 11:2051–2055

    Google Scholar 

  56. Javadi A (2000) Estimation of air losses from tunnels driven under compressed air using neural networks. In: Proceedings of the 10th international conference on computer methods and advances in geomechanics, pp 207–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, B., Gielen, G., Fernández, F.V. (2014). Electromagnetic Design Automation: Surrogate Model Assisted Evolutionary Algorithm. In: Automated Design of Analog and High-frequency Circuits. Studies in Computational Intelligence, vol 501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39162-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39162-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39161-3

  • Online ISBN: 978-3-642-39162-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics