Advertisement

Process Variation-Aware Analog Circuit Sizing: Uncertain Optimization

  • Bo Liu
  • Georges Gielen
  • Francisco V. Fernández
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 501)

Abstract

Chapter 5 provides an overview of uncertain optimization, and the application area: variation-aware analog circuit sizing. Two common efficiency enhancement methods for uncertain optimization are then introduced, including some basics of computational statistics.

Keywords

Robust Optimization Analog Circuit Yield Optimization Latin Hypercube Sampling Differential Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Graeb H (2007) Analog design centering and sizing. Springer Publishing Company, IncorporatedGoogle Scholar
  2. 2.
    Gielen G, Eeckelaert T, Martens E, McConaghy T (2007) Automated synthesis of complex analog circuits. In: Proceedings of 18th European conference on circuit theory and design, pp 20–23Google Scholar
  3. 3.
    Eshbaugh K (1992) Generation of correlated parameters for statistical circuit simulation. IEEE Trans Comput Aided Des Integr Circuits Syst 11(10):1198–1206CrossRefGoogle Scholar
  4. 4.
    Buhler M, Koehl J, Bickford J, Hibbeler J, Schlichtmann U, Sommer R, Pronath M, Ripp A (2006) DATE 2006 special session: DFM/DFY design for manufacturability and yield-influence of process variations in digital, analog and mixed-signal circuit design. In: Proceedings of design, automation and test in Europe, vol 1, pp 1–6Google Scholar
  5. 5.
    Yu G, Li P (2008) Yield-aware hierarchical optimization of large analog integrated circuits. In: Proceedings of IEEE/ACM international conference on computer-aided design, pp 79–84Google Scholar
  6. 6.
    Schenkel F, Pronath M, Zizala S, Schwencker R, Graeb H, Antreich K (2001) Mismatch analysis and direct yield optimization by specwise linearization and feasibility-guided search. In: Proceedings of the 38th design automation conference, pp 858–863Google Scholar
  7. 7.
    Mukherjee T, Carley L, Rutenbar R (2000) Efficient handling of operating range and manufacturing line variations in analog cell synthesis. IEEE Trans Comput Aided Des Integr Circuits Syst 19(8):825–839CrossRefGoogle Scholar
  8. 8.
    McConaghy T, Palmers P, Gao P, Steyaert M, Gielen G (2009a) Variation-aware analog structural synthesis: a computational intelligence approach. Springer Verlag, Dordrecht, NetherlandsGoogle Scholar
  9. 9.
    Khademsameni P, Syrzycki M (2002) Manufacturability analysis of analog CMOS ICs through examination of multiple layout solutions. In: Proceedings of 17th IEEE international symposium on defect and fault tolerance in VLSI Systems, pp 3–11Google Scholar
  10. 10.
    Xu Y, Hsiung K, Li X, Pileggi L, Boyd S (2009) Regular analog/RF integrated circuits design using optimization with recourse including ellipsoidal uncertainty. IEEE Trans Comput Aided Des Integr Circuits Syst 28(5):623–637CrossRefGoogle Scholar
  11. 11.
    Chen J, Luo P, Wey C (2010) Placement optimization for yield improvement of switched-capacitor analog integrated circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 29(2):313–318CrossRefGoogle Scholar
  12. 12.
    Schwencker R, Schenkel F, Pronath M, Graeb H (2002) Analog circuit sizing using adaptive worst-case parameter sets. In: Proceedings of design, automation and test in Europe conference and exhibition, pp 581–585Google Scholar
  13. 13.
    Tiwary S, Tiwary P, Rutenbar R (2006) Generation of yield-aware pareto surfaces for hierarchical circuit design space exploration. In: Proceedings of the 43rd annual design automation conference, pp 31–36Google Scholar
  14. 14.
    Mutlu A, Gunther N, Rahman M (2003) Concurrent optimization of process dependent variations in different circuit performance measures. In: Proceedings of the 2003 international symposium on circuits and systems, vol 4, pp 692–695Google Scholar
  15. 15.
    Stein M (1987) Large sample properties of simulations using Latin hypercube sampling. Technometrics 29:143–151Google Scholar
  16. 16.
    Singhee A, Singhal S, Rutenbar R (2008) Practical, fast Monte Carlo statistical static timing analysis: why and how. In: Proceedings of the IEEE/ACM international conference on computer-aided design, pp 190–195Google Scholar
  17. 17.
    Singhee A, Rutenbar R (2009) Novel algorithms for fast statistical analysis of scaled circuits. Springer, NetherlandsGoogle Scholar
  18. 18.
    Barros M, Guilherme J, Horta N (2010) Analog circuits optimization based on evolutionary computation techniques. Integr VLSI J 43(1):136–155CrossRefGoogle Scholar
  19. 19.
    Basu S, Kommineni B, Vemuri R (2009) Variation-aware macromodeling and synthesis of analog circuits using spline center and range method and dynamically reduced design space. In: Proceedings of 22nd international conference on VLSI design, pp 433–438Google Scholar
  20. 20.
    Liu B, Fernández F, Gielen G (2011a) Efficient and accurate statistical analog yield optimization and variation-aware circuit sizing based on computational intelligence techniques. IEEE Trans Comput Aided Des Integr Circuits Syst 30(6):793–805Google Scholar
  21. 21.
    Liu B, Zhang Q, Fernández F, Gielen G (2013a) An efficient evolutionary algorithm for chance-constrained bi-objective stochastic optimization and its application to manufacturing engineering. IEEE Trans Evol Comput (To be published)Google Scholar
  22. 22.
    Sengupta M, Saxena S, Daldoss L, Kramer G, Minehane S, Cheng J (2005) Application-specific worst case corners using response surfaces and statistical models. IEEE Trans Comput Aided Des Integr Circuits Syst 24(9):1372–1380CrossRefGoogle Scholar
  23. 23.
    MunEDA (2013) MunEDA homepage. http://www.muneda.com/index.php
  24. 24.
    Solido (2013) Solido Design Automation homepage. http://www.solidodesign.com/
  25. 25.
    Goh C, Tan K (2009) Evolutionary multi-objective optimization in uncertain environments: issues and algorithms. Springer, BerlinGoogle Scholar
  26. 26.
    Beyer H (2000) Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Comput Methods Appl Mech Eng 186(2):239–267MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Liu B (2010) Uncertain programming. Uncertainty theory, pp 81–113Google Scholar
  28. 28.
    Mercado LL, Kuo SM, Lee TY, Lee R (2005) Analysis of RF MEMS switch packaging process for yield improvement. IEEE Trans Adv Packag 28(1):134–141CrossRefGoogle Scholar
  29. 29.
    Chan H, Englert P (2001) Accelerated stress testing handbook. IEEE Press, New YorkGoogle Scholar
  30. 30.
    Liu B (2002) Theory and practice of uncertain programming. Physica Verlag, HeidelbergGoogle Scholar
  31. 31.
    Lv P, Chang P (2008) Rough programming and its application to production planning. In: Proceedings of international conference on risk management & engineering management, pp 136–140Google Scholar
  32. 32.
    Wasserman P (1989) Neural computing: theory and practice. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  33. 33.
    Zhang Q, Liou J, McMacken J, Thomson J, Layman P (2001) Development of robust interconnect model based on design of experiments and multiobjective optimization. IEEE Trans Electron Dev 48(9):1885–1891CrossRefGoogle Scholar
  34. 34.
    Nazemi A, Yao X, Chan A (2006) Extracting a set of robust Pareto-optimal parameters for hydrologic models using NSGA-II and SCEM. In: Proceedings of IEEE congress on evolutionary computation, pp 1901–1908Google Scholar
  35. 35.
    Andrieu C, De Freitas N, Doucet A, Jordan M (2003) An introduction to MCMC for machine learning. Mach Learn 50(1):5–43zbMATHCrossRefGoogle Scholar
  36. 36.
    Cowles M, Carlin B (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904Google Scholar
  37. 37.
    Owen A (1998) Latin supercube sampling for very high-dimensional simulations. ACM Trans Model Comput Simul (TOMACS) 8(1):71–102MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    McConaghy T, Gielen G (2009) Globally reliable variation-aware sizing of analog integrated circuits via response surfaces and structural homotopy. IEEE Trans Comput Aided Des Integr Circuits Syst 28(11):1627–1640CrossRefGoogle Scholar
  39. 39.
    McConaghy T, Palmers P, Steyaert M, Gielen G (2009b) Variation-aware structural synthesis of analog circuits via hierarchical building blocks and structural homotopy. IEEE Trans Comput Aided Des Integr Circuits Syst 28(9):1281–1294Google Scholar
  40. 40.
    Hlawka E (1961) Funktionen von beschränkter variatiou in der theorie der gleichverteilung. Annali di Matematica Pura ed Applicata 54(1):325–333MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Hickernell F (1998) A generalized discrepancy and quadrature error bound. Math Comput 67(221):299–322MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Doorn T, Ter Maten E, Croon J, Di Bucchianico A, Wittich O (2008) Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield. In: Proceedings of 34th European solid-state circuits conference, pp 230–233Google Scholar
  43. 43.
    Keramat M, Kielbasa R (1997) Latin hypercube sampling Monte Carlo estimation of average quality index for integrated circuits. Analog Integr Circuits Signal Process 14(1):131–142CrossRefGoogle Scholar
  44. 44.
    Dharchoudhury A, Kang S (1993) Performance-constrained worst-case variability minimization of VLSI circuits. In: Proceedings of 30th conference on design automation, pp 154–158Google Scholar
  45. 45.
    Rackwitz R (2002) Optimization and risk acceptability based on the life quality index. Struct Saf 24(2):297–331CrossRefGoogle Scholar
  46. 46.
    Caflisch R, Morokoff W, Owen A (1997) Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. Department of Mathematics, University of California, Los Angeles, Technical ReportGoogle Scholar
  47. 47.
    McKay M, Beckman R, Conover W (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245Google Scholar
  48. 48.
    Liu B, Messaoudi J, Gielen G (2012c) A fast analog circuit yield estimation method for medium and high dimensional problems. In: Proceedings of the conference on design, automation and test in Europe, pp 751–756Google Scholar
  49. 49.
    Singhee A, Rutenbar R (2010) Why Quasi-Monte Carlo is better than Monte Carlo or Latin hypercube sampling for statistical circuit analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 29(11):1763–1776CrossRefGoogle Scholar
  50. 50.
    Acworth P, Broadie M, Glasserman P (1998) A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. In: Monte Carlo and Quasi-Monte Carlo methods in scientific computing, vol 127, pp 1–18Google Scholar
  51. 51.
    Matousek J (1998) On the L2-discrepancy for anchored boxes. J Complex 14(4):527–556MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Fischer H (2011) A history of the central limit theorem: from classical to modern probability theory. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bo Liu
    • 1
  • Georges Gielen
    • 2
  • Francisco V. Fernández
    • 3
  1. 1.Department of ComputingGlyndwr UniversityWrexham, WalesUK
  2. 2.Department of Elektrotechniek ESAT-MICASKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.IMSE-CNMUniversidad de Sevilla and CSICSevillaSpain

Personalised recommendations