Skip to main content

Process Variation-Aware Analog Circuit Sizing: Uncertain Optimization

  • Chapter
  • First Online:
Automated Design of Analog and High-frequency Circuits

Part of the book series: Studies in Computational Intelligence ((SCI,volume 501))

  • 1391 Accesses

Abstract

Chapter 5 provides an overview of uncertain optimization, and the application area: variation-aware analog circuit sizing. Two common efficiency enhancement methods for uncertain optimization are then introduced, including some basics of computational statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graeb H (2007) Analog design centering and sizing. Springer Publishing Company, Incorporated

    Google Scholar 

  2. Gielen G, Eeckelaert T, Martens E, McConaghy T (2007) Automated synthesis of complex analog circuits. In: Proceedings of 18th European conference on circuit theory and design, pp 20–23

    Google Scholar 

  3. Eshbaugh K (1992) Generation of correlated parameters for statistical circuit simulation. IEEE Trans Comput Aided Des Integr Circuits Syst 11(10):1198–1206

    Article  Google Scholar 

  4. Buhler M, Koehl J, Bickford J, Hibbeler J, Schlichtmann U, Sommer R, Pronath M, Ripp A (2006) DATE 2006 special session: DFM/DFY design for manufacturability and yield-influence of process variations in digital, analog and mixed-signal circuit design. In: Proceedings of design, automation and test in Europe, vol 1, pp 1–6

    Google Scholar 

  5. Yu G, Li P (2008) Yield-aware hierarchical optimization of large analog integrated circuits. In: Proceedings of IEEE/ACM international conference on computer-aided design, pp 79–84

    Google Scholar 

  6. Schenkel F, Pronath M, Zizala S, Schwencker R, Graeb H, Antreich K (2001) Mismatch analysis and direct yield optimization by specwise linearization and feasibility-guided search. In: Proceedings of the 38th design automation conference, pp 858–863

    Google Scholar 

  7. Mukherjee T, Carley L, Rutenbar R (2000) Efficient handling of operating range and manufacturing line variations in analog cell synthesis. IEEE Trans Comput Aided Des Integr Circuits Syst 19(8):825–839

    Article  Google Scholar 

  8. McConaghy T, Palmers P, Gao P, Steyaert M, Gielen G (2009a) Variation-aware analog structural synthesis: a computational intelligence approach. Springer Verlag, Dordrecht, Netherlands

    Google Scholar 

  9. Khademsameni P, Syrzycki M (2002) Manufacturability analysis of analog CMOS ICs through examination of multiple layout solutions. In: Proceedings of 17th IEEE international symposium on defect and fault tolerance in VLSI Systems, pp 3–11

    Google Scholar 

  10. Xu Y, Hsiung K, Li X, Pileggi L, Boyd S (2009) Regular analog/RF integrated circuits design using optimization with recourse including ellipsoidal uncertainty. IEEE Trans Comput Aided Des Integr Circuits Syst 28(5):623–637

    Article  Google Scholar 

  11. Chen J, Luo P, Wey C (2010) Placement optimization for yield improvement of switched-capacitor analog integrated circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 29(2):313–318

    Article  Google Scholar 

  12. Schwencker R, Schenkel F, Pronath M, Graeb H (2002) Analog circuit sizing using adaptive worst-case parameter sets. In: Proceedings of design, automation and test in Europe conference and exhibition, pp 581–585

    Google Scholar 

  13. Tiwary S, Tiwary P, Rutenbar R (2006) Generation of yield-aware pareto surfaces for hierarchical circuit design space exploration. In: Proceedings of the 43rd annual design automation conference, pp 31–36

    Google Scholar 

  14. Mutlu A, Gunther N, Rahman M (2003) Concurrent optimization of process dependent variations in different circuit performance measures. In: Proceedings of the 2003 international symposium on circuits and systems, vol 4, pp 692–695

    Google Scholar 

  15. Stein M (1987) Large sample properties of simulations using Latin hypercube sampling. Technometrics 29:143–151

    Google Scholar 

  16. Singhee A, Singhal S, Rutenbar R (2008) Practical, fast Monte Carlo statistical static timing analysis: why and how. In: Proceedings of the IEEE/ACM international conference on computer-aided design, pp 190–195

    Google Scholar 

  17. Singhee A, Rutenbar R (2009) Novel algorithms for fast statistical analysis of scaled circuits. Springer, Netherlands

    Google Scholar 

  18. Barros M, Guilherme J, Horta N (2010) Analog circuits optimization based on evolutionary computation techniques. Integr VLSI J 43(1):136–155

    Article  Google Scholar 

  19. Basu S, Kommineni B, Vemuri R (2009) Variation-aware macromodeling and synthesis of analog circuits using spline center and range method and dynamically reduced design space. In: Proceedings of 22nd international conference on VLSI design, pp 433–438

    Google Scholar 

  20. Liu B, Fernández F, Gielen G (2011a) Efficient and accurate statistical analog yield optimization and variation-aware circuit sizing based on computational intelligence techniques. IEEE Trans Comput Aided Des Integr Circuits Syst 30(6):793–805

    Google Scholar 

  21. Liu B, Zhang Q, Fernández F, Gielen G (2013a) An efficient evolutionary algorithm for chance-constrained bi-objective stochastic optimization and its application to manufacturing engineering. IEEE Trans Evol Comput (To be published)

    Google Scholar 

  22. Sengupta M, Saxena S, Daldoss L, Kramer G, Minehane S, Cheng J (2005) Application-specific worst case corners using response surfaces and statistical models. IEEE Trans Comput Aided Des Integr Circuits Syst 24(9):1372–1380

    Article  Google Scholar 

  23. MunEDA (2013) MunEDA homepage. http://www.muneda.com/index.php

  24. Solido (2013) Solido Design Automation homepage. http://www.solidodesign.com/

  25. Goh C, Tan K (2009) Evolutionary multi-objective optimization in uncertain environments: issues and algorithms. Springer, Berlin

    Google Scholar 

  26. Beyer H (2000) Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Comput Methods Appl Mech Eng 186(2):239–267

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu B (2010) Uncertain programming. Uncertainty theory, pp 81–113

    Google Scholar 

  28. Mercado LL, Kuo SM, Lee TY, Lee R (2005) Analysis of RF MEMS switch packaging process for yield improvement. IEEE Trans Adv Packag 28(1):134–141

    Article  Google Scholar 

  29. Chan H, Englert P (2001) Accelerated stress testing handbook. IEEE Press, New York

    Google Scholar 

  30. Liu B (2002) Theory and practice of uncertain programming. Physica Verlag, Heidelberg

    Google Scholar 

  31. Lv P, Chang P (2008) Rough programming and its application to production planning. In: Proceedings of international conference on risk management & engineering management, pp 136–140

    Google Scholar 

  32. Wasserman P (1989) Neural computing: theory and practice. Van Nostrand Reinhold Co., New York

    Google Scholar 

  33. Zhang Q, Liou J, McMacken J, Thomson J, Layman P (2001) Development of robust interconnect model based on design of experiments and multiobjective optimization. IEEE Trans Electron Dev 48(9):1885–1891

    Article  Google Scholar 

  34. Nazemi A, Yao X, Chan A (2006) Extracting a set of robust Pareto-optimal parameters for hydrologic models using NSGA-II and SCEM. In: Proceedings of IEEE congress on evolutionary computation, pp 1901–1908

    Google Scholar 

  35. Andrieu C, De Freitas N, Doucet A, Jordan M (2003) An introduction to MCMC for machine learning. Mach Learn 50(1):5–43

    Article  MATH  Google Scholar 

  36. Cowles M, Carlin B (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904

    Google Scholar 

  37. Owen A (1998) Latin supercube sampling for very high-dimensional simulations. ACM Trans Model Comput Simul (TOMACS) 8(1):71–102

    Article  MathSciNet  MATH  Google Scholar 

  38. McConaghy T, Gielen G (2009) Globally reliable variation-aware sizing of analog integrated circuits via response surfaces and structural homotopy. IEEE Trans Comput Aided Des Integr Circuits Syst 28(11):1627–1640

    Article  Google Scholar 

  39. McConaghy T, Palmers P, Steyaert M, Gielen G (2009b) Variation-aware structural synthesis of analog circuits via hierarchical building blocks and structural homotopy. IEEE Trans Comput Aided Des Integr Circuits Syst 28(9):1281–1294

    Google Scholar 

  40. Hlawka E (1961) Funktionen von beschränkter variatiou in der theorie der gleichverteilung. Annali di Matematica Pura ed Applicata 54(1):325–333

    Article  MathSciNet  MATH  Google Scholar 

  41. Hickernell F (1998) A generalized discrepancy and quadrature error bound. Math Comput 67(221):299–322

    Article  MathSciNet  MATH  Google Scholar 

  42. Doorn T, Ter Maten E, Croon J, Di Bucchianico A, Wittich O (2008) Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield. In: Proceedings of 34th European solid-state circuits conference, pp 230–233

    Google Scholar 

  43. Keramat M, Kielbasa R (1997) Latin hypercube sampling Monte Carlo estimation of average quality index for integrated circuits. Analog Integr Circuits Signal Process 14(1):131–142

    Article  Google Scholar 

  44. Dharchoudhury A, Kang S (1993) Performance-constrained worst-case variability minimization of VLSI circuits. In: Proceedings of 30th conference on design automation, pp 154–158

    Google Scholar 

  45. Rackwitz R (2002) Optimization and risk acceptability based on the life quality index. Struct Saf 24(2):297–331

    Article  Google Scholar 

  46. Caflisch R, Morokoff W, Owen A (1997) Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. Department of Mathematics, University of California, Los Angeles, Technical Report

    Google Scholar 

  47. McKay M, Beckman R, Conover W (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245

    Google Scholar 

  48. Liu B, Messaoudi J, Gielen G (2012c) A fast analog circuit yield estimation method for medium and high dimensional problems. In: Proceedings of the conference on design, automation and test in Europe, pp 751–756

    Google Scholar 

  49. Singhee A, Rutenbar R (2010) Why Quasi-Monte Carlo is better than Monte Carlo or Latin hypercube sampling for statistical circuit analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 29(11):1763–1776

    Article  Google Scholar 

  50. Acworth P, Broadie M, Glasserman P (1998) A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. In: Monte Carlo and Quasi-Monte Carlo methods in scientific computing, vol 127, pp 1–18

    Google Scholar 

  51. Matousek J (1998) On the L2-discrepancy for anchored boxes. J Complex 14(4):527–556

    Article  MathSciNet  MATH  Google Scholar 

  52. Fischer H (2011) A history of the central limit theorem: from classical to modern probability theory. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, B., Gielen, G., Fernández, F.V. (2014). Process Variation-Aware Analog Circuit Sizing: Uncertain Optimization. In: Automated Design of Analog and High-frequency Circuits. Studies in Computational Intelligence, vol 501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39162-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39162-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39161-3

  • Online ISBN: 978-3-642-39162-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics