Restricted Neighborhood Search Clustering Revisited: An Evolutionary Computation Perspective

  • Clara Pizzuti
  • Simona E. Rombo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7986)


Protein-protein interaction networks have been broadly studied in the last few years, in order to understand the behavior of proteins inside the cell. Proteins interacting with each other often share common biological functions or they participate in the same biological process. Thus, discovering protein complexes made of groups of proteins strictly related, can be useful to predict protein functions. Clustering techniques have been widely employed to detect significative biological complexes. In this paper, we integrate one of the most popular network clustering techniques, namely the Restricted Neighborhood Search Clustering (RNSC), with evolutionary computation. The two cost functions introduced by RNSC, besides a new one that combines them, are used by a Genetic Algorithm as fitness functions to be optimized. Experimental evaluations performed on two different groups of interactions of the budding yeast Saccaromices cerevisiae show that the clusters obtained by the genetic approach are more accurate than those found by RNSC, though this method predicts more true complexes.


Genetic Algorithm Cost Function Protein Interaction Network Predict Protein Function True Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7(207) (2006)Google Scholar
  2. 2.
    Atias, N., Sharan, R.: Comparative analysis of protein networks: hard problems, practical solutions. Commun. ACM 55(5), 88–97 (2012)CrossRefGoogle Scholar
  3. 3.
    Bader, G., Hogue, H.: An automated method for finding molecular complexes in large protein-protein interaction networks. BMC Bioinformatics 4(2) (2003)Google Scholar
  4. 4.
    Barabási, A., Oltvai, Z.N.: Network biology: Understanding the cell’s functional organization. Nature Review Genetics 5, 101–113 (2004)CrossRefGoogle Scholar
  5. 5.
    Blatt, M., Wiseman, S., Domany, E.: Superparamagnetic clustering of data. Phisical Review Letters 76(18), 3251–3254 (1996)CrossRefGoogle Scholar
  6. 6.
    Brohèe, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488 (2006)CrossRefGoogle Scholar
  7. 7.
    Cho, Y.-R., Hwang, W., Ramanathan, M., Zhang, A.: Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics 8, 265 (2007)CrossRefGoogle Scholar
  8. 8.
    Thomas, H., Cormen, C.E., Leiserson, R.L.: Rivest, and Clifford Stein. In: Introduction to Algorithms, 2nd edn. MIT Press (2007)Google Scholar
  9. 9.
    Farutin, V., Robinson, K., Lightcap, E., Dancik, V., Ruttenberg, A., Letovsky, S., Pradines, J.: Edge-count probabilities for the identification of local protein communities and their organization. Proteins: Structure, Function, and Bioinformatics 62, 800–818 (2006)CrossRefGoogle Scholar
  10. 10.
    Ferraro, N., Palopoli, L., Panni, S., Rombo, S.E.: Asymmetric comparison and querying of biological networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, 876–889 (2011)CrossRefGoogle Scholar
  11. 11.
    Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006)CrossRefGoogle Scholar
  12. 12.
    Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: Clustering algorithm based graph connectivity. Nature 402, 47–52 (1999)CrossRefGoogle Scholar
  13. 13.
    Hwang, W., Cho, Y.-R., Zhang, A., Ramanathan, M.: A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology 1(24) (2006)Google Scholar
  14. 14.
    King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)CrossRefGoogle Scholar
  15. 15.
    Krogan, N.J., et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)CrossRefGoogle Scholar
  16. 16.
    Li, M., Chen, J., Wang, J., Hu, B., Chen, G.: Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics 9 (2008)Google Scholar
  17. 17.
    Lin, C., Cho, Y., Hwang, W., Pei, P., Zhang, A.: Clustering methods in protein-protein interaction network. Knowledge Discovery in Bioinformatics: Techniques, Methods and Application. John Wiley & Sons, Inc. (2006)Google Scholar
  18. 18.
    Liu, H., Liu, J.: Clustering protein interaction data through chaotic genetic algorithm. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 858–864. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Mewes, H.W., et al.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30(1), 31–34 (2002)CrossRefGoogle Scholar
  20. 20.
    Mewes, H.W., et al: MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Res. 34(database issue(1), 169–172 (2006)Google Scholar
  21. 21.
    Miller, J.P., et al.: Large-scale identification of yeast integral membrane protein interactions. Proc. Natl. Acad. Sci. USA 102(34), 12123–12128 (2005)CrossRefGoogle Scholar
  22. 22.
    Moschopoulos, C.N., Pavlopoulos, P.A., Iacucci, E., Aerts, J., Likothanassis, S., Schneider, R., Kossida, S.: Which clustering algorithm is better for predicting protein complexes? BMC Research Notes 4(549) (2011)Google Scholar
  23. 23.
    Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  24. 24.
    Park, Y.J., Song, M.S.: A genetic algorithm for clustering problems. In: Proc. of 3rd Annual Conference on Genetic Algorithms, pp. 2–9 (1989)Google Scholar
  25. 25.
    Pei, P., Zhang, A.: A two-step approach for clustering proteins based on protein interaction profiles. In: IEEE Int. Symposium on Bioinformatics and Bioengeneering (BIBE 2005), pp. 201–209 (2005)Google Scholar
  26. 26.
    Pereira, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein interaction networks. Proteins: Structure, Fuctions, and Bioinformatics (20), 49–57 (2004)Google Scholar
  27. 27.
    Pizzuti, C., Rombo, S.E.: Discovering Protein Complexes in Protein Interaction Networks in Biological Data Mining in Protein Interaction Networks. In: Li, X.-L., Ng, S.-K. (eds.). IGI Global- Medical Inf. Science Ref. (2009)Google Scholar
  28. 28.
    Pizzuti, C., Rombo, S.E.: A coclustering approach for mining large protein-protein interaction networks. IEEE/ACM Trans. Comput. Biology Bioinform. 9(3), 717–730 (2012)CrossRefGoogle Scholar
  29. 29.
    Pizzuti, C., Rombo, S.E., Marchiori, E.: Complex detection in protein-protein interaction networks: A compact overview for researchers and practitioners. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 211–223. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Pizzuti, C., Rombo, S.E.: Experimental evaluation of topological-based fitness functions to detect complexes in PPI networks. In: Proc. of the Genetic and Evolutionary Computation Conference (Gecco 2012), pp. 193–200 (2012)Google Scholar
  31. 31.
    Ravaee, H., Masoudi-Nejad, A., Omidi, S., Moeini, A.: Improved immune genetic algorithm for clustering protein-protein interaction network. In: Proceedings of the 2010 IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2010, pp. 174–179. IEEE Computer Society (2010)Google Scholar
  32. 32.
    Samantha, M.P., Liang, S.: Predicting protein functions from redundancies in large-scale protein interaction networks. Proc. of the National Academy of Science 100(22), 12579–12583 (2003)CrossRefGoogle Scholar
  33. 33.
    Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Molecular Systems Biology 3(88) (2007)Google Scholar
  34. 34.
    Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. PNAS 100, 12123–12128 (2003)CrossRefGoogle Scholar
  35. 35.
    Tornw, S., Mewes, H.W.: Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Research 31(21), 6283–6289 (2003)CrossRefGoogle Scholar
  36. 36.
    De Virgilio, R., Rombo, S.E.: Approximate matching over biological RDF graphs. In: Proceedings of the ACM Symposium on Applied Computing, SAC 2012, pp. 1413–1414 (2012)Google Scholar
  37. 37.
    von Mering, D., Krause, C., et al.: Comparative assessment of a large-scale data sets of protein-protein interactions. Nature 31, 399–403 (2002)CrossRefGoogle Scholar
  38. 38.
    Wang, J., Li, M., Deng, Y., Pan, Y.: Recent advances in clustering methods for protein interaction networks. BMC Genomics 11(suppl. 3), S10 (2010)Google Scholar
  39. 39.
    Zaki, N., Berengueres, J., Efimov, D.: Prorank: a method for detecting protein complexes. In: Proc. of the Genetic and Evolutionary Computation Conference (Gecco 2012), pp. 209–216 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Clara Pizzuti
    • 1
  • Simona E. Rombo
    • 2
  1. 1.Institute for High Performance Computing and Networking, National Research Council of ItalyCNR-ICARRendeItaly
  2. 2.Department of Mathematics, Computer Science SectionUniversitá degli Studi di PalermoPalermoItaly

Personalised recommendations