Advertisement

A Workflow for the Prediction of the Effects of Residue Substitution on Protein Stability

  • Ruben Acuña
  • Zoé Lacroix
  • Jacques Chomilier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7986)

Abstract

The effects of residue substitution in protein can be dramatic and predicting its impact may benefit scientists greatly. Like in many scientific domains there are various methods and tools available to address the potential impact of a mutation on the structure of a protein. The identification of these methods, their availability, the time needed to gain enough familiarity with them and their interface, and the difficulty of integrating their results in a global view where all view points can be visualized often limit their use. In this paper, we present the Structural Prediction for pRotein fOlding UTility System (SPROUTS) workflow and describe our method for designing, documenting, and maintaining the workflow. The focus of the workflow is the thermodynamic contribution to stability, which can be considered as acceptable for small proteins. It compiles the predictions from various sources calculating the ΔΔG upon point mutation, together with a consensus from eight distinct algorithms, with a prediction of the mean number of interacting residues during the process of folding, and a sub domain structural analysis into fragments that may potentially be considered as autonomous folding units, i.e., with similar conformations alone and in the protein body. The workflow is implemented and available online. We illustrate its use with the analysis of the engrailed homeodomain (PDB code 1enh).

Keywords

Protein Stability Design Task Domain Ontology Laboratory Information Management System Implementation Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aeschlimann, M., Dinda, P., Lopez, J., Lowekamp, B., Kallivokas, L., O’Hallaron, D.: Preliminary report on the design of a framework for distributed visualization. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 1833–1839 (1999)Google Scholar
  2. 2.
    Alland, C., Moreews, F., Boens, D., Carpentier, M., Chiusa, S., Lonquety, M., Renault, N., Wong, Y., Cantalloube, H., Chomilier, J., Hochez, J., Pothier, J., Villoutreix, B.O., Zagury, J.-F., Tufféry, P.: RPBS: a web resource for structural bioinformatics. Nucleic Acids Res. 33(web Server issue), W44–W49 (2005)Google Scholar
  3. 3.
    Benedix, A., Becker, C.M., de Groot, B.L., Caflisch, A., Böckmann, R.A.: Predicting free energy changes using structural ensembles. Nat. Methods 6(1), 3–4 (2009)CrossRefGoogle Scholar
  4. 4.
    Capriotti, E., Fariselli, P., Casadio, R.: I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 33, 306–310 (2005)CrossRefGoogle Scholar
  5. 5.
    Cheng, J., Randall, A., Baldi, P.: Prediction of protein stability changes for single site mutations using support vector machines. Proteins 62, 1125–1132 (2006)CrossRefGoogle Scholar
  6. 6.
    Condor. Manual (7.0.1) (2008), http://www.cs.wisc.edu/condor/manual/v7.0/
  7. 7.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.-H., Vahi, K., Livny, M.: Pegasus: Mapping Scientific Workows onto the Grid. In: European Across Grids Conference, pp. 11–20 (2004)Google Scholar
  8. 8.
    Deutsch, C., Krishnaoorthy, B.: Four body scoring function for mutagenesis. Bioinformatics 23(22), 2009–3015 (2007)CrossRefGoogle Scholar
  9. 9.
    Dosztányi, Z., Magyar, C., Tusnády, G., Simon, I.: SCide: identification of stabilization centers in proteins. Bioinformatics 19(7), 899–900 (2003)CrossRefGoogle Scholar
  10. 10.
    Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: a virtual data system for representing, querying and automating data derivation. In: 14th International Conference on Scientific and Statistical Database Management, pp. 37–46 (2002)Google Scholar
  11. 11.
    Gilis, D., Rooman, M.: PoPMuSiC, an algorithm for predicting protein mutant stability changes: application to prion proteins. Protein Eng. 13(12), 849–856 (2000)CrossRefGoogle Scholar
  12. 12.
    GriPhyN. Grid Physics Network in ATLAS, http://www.usatlas.bnl.gov/computing/grid/griphyn/
  13. 13.
    Guerois, R., Nielsen, J., Serrano, L.: Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320(2), 369–387 (2002)CrossRefGoogle Scholar
  14. 14.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34(web server issue), 729–732 (2006)CrossRefGoogle Scholar
  15. 15.
    Khan, S., Vihinen, M.: Performance of protein stability predictors. Hum. Mutat. 31(6), 675–684 (2010)CrossRefGoogle Scholar
  16. 16.
    Kinsy, M., Lacroix, Z., Legendre, C., Wlodarczyk, P., Yacoubi, N.: ProtocolDB: Storing Scientific Protocols with a Domain Ontology. In: Weske, M., Hacid, M.-S., Godart, C. (eds.) WISE Workshops 2007. LNCS, vol. 4832, pp. 17–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Kumar, M., Bava, K., Gromiha, M., Prabakaran, P., Kitajima, K., Uedaira, H., Sarai, A.: ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic Acids Res 34, D204–D220 (2006)Google Scholar
  18. 18.
    Kurgan, L., Cios, L., Chen, K.: SCPRED: accurate prediction of protein structural class for sequences of twilight zone similarity with predicting sequences. BMC Bioinformatics 9, 226 (2008)CrossRefGoogle Scholar
  19. 19.
    Kwasigroch, J.M., Gilis, D., Dehouck, Y., Rooman, M.: PoPMuSiC, rationally designing point mutations in protein structures. Bioinformatics 18, 1701–1702 (2002)CrossRefGoogle Scholar
  20. 20.
    Lacroix, Z., Aziz, M.: Resource descriptions, ontology, and resource discovery. International Journal of Metadata, Semantics and Ontologies 5(3), 194–207 (2010)Google Scholar
  21. 21.
    Lacroix, Z., Legendre, C., Tuzmen, S.: Reasoning on Scientific Workflows. In: Proceedings of the IEEE International Workshop on Scientific Workflows, vol. World Conference on Services - I, pp. 306–313. IEEE Computer Society (2009)Google Scholar
  22. 22.
    Lacroix, Z., Ludaescher, B., Stevens, R.: Integrating Biological Databases. In: Bioinformatics - From Genomes to Therapies, vol. III, pp. 1525–1572. Wiley-VCH Publisher (2007)Google Scholar
  23. 23.
    Letondal, C.: A web interface generator for molecular biology programs in Unix. Bioinformatics 17, 73–82 (2001)CrossRefGoogle Scholar
  24. 24.
    Lonquety, M., Lacroix, Z., Papandreou, N., Chomilier, J.: SPROUTS: a database for the evaluation of protein stability upon point mutation. Nucleic Acids Res. 37, 374–379 (2009)CrossRefGoogle Scholar
  25. 25.
    Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific Workflow Management and the KEPLER System. Concurrency and Computation: Practice and Experience, Special Issue on Scientific Workflows 18(10), 1039–1065 (2005)CrossRefGoogle Scholar
  26. 26.
    Maechling, P., Chalupsky, H., Dougherty, M., Deelman, E., Gil, Y., Gullapalli, S., Gupta, V., Kesselman, C., Kim, J., Mehta, G., Mendenhall, B., Russ, T., Singh, G., Spraragen, M., Staples, G., Vahi, K.: Simplifying construction of complex workflows for non-expert users of the southern california earthquake center community modeling environment. ACM SIGMOD Record 34(3), 24–30 (2005)CrossRefGoogle Scholar
  27. 27.
    Magyar, C., Gromiha, M., Pujadas, G., Tusnády, G., Simon, I.: SRide: a server for identifying stabilizing residues in proteins. Nucleic Acids Res. 33, W303–W305 (2005)Google Scholar
  28. 28.
    Masso, M., Vaisman, I.: Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Bioinformatics 24, 2002–2009 (2008)CrossRefGoogle Scholar
  29. 29.
    McPhillips, T.M., Bowers, S.: An approach for pipelining nested collections in scientific workflows. ACM SIGMOD Record 34(3), 12–17 (2005)CrossRefGoogle Scholar
  30. 30.
    McPhillips, T., Bowers, S., Ludäscher, B.: Collection-Oriented Scientific Workflows for Integrating and Analyzing Biological Data. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 248–263. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Medeiros, C.B., Perez-Alcazar, J., Digiampietri, L., Pastorello, J.G.Z., Santanche, A., Torres, R.S., Madeira, E., Bacarin, E.: WOODSS and the Web: annotating and reusing scientific workflows. ACM SIGMOD Record 34(3), 18–23 (2005)CrossRefGoogle Scholar
  32. 32.
    Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams, A., Oinn, T., Goble, C.: Taverna, reloaded. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 471–481. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Néron, B., Ménager, H., Maufrais, C., Joly, N., Maupetit, J., Letort, S., Carrere, S., Tuffery, P., Letondal, C.: Mobyle: a new full web bioinformatics framework. Bioinformatics 22, 3005–3011 (2009)CrossRefGoogle Scholar
  34. 34.
    Parthiban, V., Gromiha, M., Schomburg, D.: CUPSAT: prediction of protein stability upon point mutation. Nucleic Acids Res. 34, W239–W242 (2006)Google Scholar
  35. 35.
    Pokala, N., Handel, T.: Energy Functions for Protein Design: Adjustment with Protein–Protein Complex Affinities, Models for the Unfolded State, and Negative Design of Solubility and Specificity. J. Mol. Biol. 347(1), 203–227 (2005)CrossRefGoogle Scholar
  36. 36.
    Potapov, V., Cohen, M., Inbar, Y., Schreiber, G.: Accurate structure modelling based on precise description of inter-residue interactions. BMC Bioinformatics 11, 374 (2010)CrossRefGoogle Scholar
  37. 37.
    Potapov, V., Cohen, M., Schreiber, G.: Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Protein Eng. Des. Sel. 22(9), 553–560 (2009)CrossRefGoogle Scholar
  38. 38.
    Religa, T.L., Markson, J.S., Mayor, U., Freund, S.M.V., Fersht, A.R.: Solution structure of a protein denatured state and folding intermediate. Nature 437, 1053–1056 (2005)CrossRefGoogle Scholar
  39. 39.
    Rohl, C., Strauss, C., Misura, K., Baker, D.: Protein structure prediction using Rosetta. Methods Enzym. 383, 66–93 (2004)CrossRefGoogle Scholar
  40. 40.
    Sarachu, M., Colet, M.: wEMBOSS: a web interface for EMBOSS. Bioinformatics 21, 540–541 (2005)CrossRefGoogle Scholar
  41. 41.
    Schymkowitz, J., Borg, J., Stricher, F., Nys, R.F., Serrano, L.: The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005)Google Scholar
  42. 42.
    Tokuriki, T.D., Stability, N.: effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19(5), 596–604 (2009)CrossRefGoogle Scholar
  43. 43.
    Tufféry, P., Lacroix, Z., Ménager, H.: Semantic Map of Services for Structural Bioinformatics. In: Proc. 18th International Conference on Scientific and Statistical Database Management, pp. 217–224. IEEE, Vienna (2006)Google Scholar
  44. 44.
    Wainreb, G., Ashkenazy, H., Bromberg, Y., Starovolsky-Shitrit, A., Haliloglu, T., Ruppin, E., Avraham, K., Rost, B., Ben-Tal, N.: Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site. Bioinformatics 27, 3286–3292 (2011)CrossRefGoogle Scholar
  45. 45.
    Wainreb, G., Ashkenazy, H., Bromberg, Y., Starovolsky-Shitrit, A., Haliloglu, T., Ruppin, E., Avraham, K., Rost, B., Ben-Tal, N.: MuD: an interactive web server for the prediction of non neutral substitutions using protein structural data. Nucleic Acids Res. 38, W523–W528 (2010)Google Scholar
  46. 46.
    Worth, C., Preissner, R., Blundell, T.: SDM - a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 39, W215–W222 (2011)Google Scholar
  47. 47.
    Yang, Y., Zhou, Y.: Ab initio folding of terminal segments with secondary structures reveals the fine difference between two closely related all atom statistical energy functions. Prot. Sci. 17, 1212–1219 (2008)CrossRefGoogle Scholar
  48. 48.
    Yin, S., Ding, F., Dokholyan, N.: Eris: an automated estimator of protein stability. Nature Meth. 4, 466–467 (2007)CrossRefGoogle Scholar
  49. 49.
    Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11, 2714–2726 (2002)CrossRefGoogle Scholar
  50. 50.
    Zhou, H., Zhou, Y.: Fold recognition by combining sequence profiles derived from evolution and from depth dependent structural alignment of fragments. Proteins 58, 321–328 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ruben Acuña
    • 1
  • Zoé Lacroix
    • 1
  • Jacques Chomilier
    • 2
    • 3
  1. 1.Arizona State UniversityTempeUSA
  2. 2.CNRS UMR 7590Protein Structure Prediction, IMPMC, Université Pierre et Marie CurieParisFrance
  3. 3.RPBSUniversité Paris DiderotParisFrance

Personalised recommendations