Inferring Gene Regulatory Networks from Time-Series Expressions Using Random Forests Ensemble

  • D. A. K. Maduranga
  • Jie Zheng
  • Piyushkumar A. Mundra
  • Jagath C. Rajapakse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7986)

Abstract

Reconstructing gene regulatory network (GRN) from time-series expression data has become increasingly popular since time course data contain temporal information about gene regulation. A typical microarray gene expression data contain expressions of thousands of genes but the number of time samples is usually very small. Therefore, inferring a GRN from such a high-dimensional expression data poses a major challenge. This paper proposes a tree based ensemble of random forests in a multivariate auto-regression framework to tackle this problem. The efficacy of the proposed approach is demonstrated on synthetic time-series datasets and Saccharomyces cerevisiae (Yeast) microarray gene expression data with 9-genes. The performance is comparable or better than GRN generated using dynamic Bayesian networks and ordinary differential equations (ODE) model.

Keywords

Gene regulatory networks time-series gene expression data gene regulation Random forests multivariate auto-regression regression trees 

References

  1. 1.
    Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks. Bioinformatics 19(17), 2271–2282 (2003)CrossRefGoogle Scholar
  2. 2.
    Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations. Journal of the Royal Society Interface 5(suppl. 1), S85–S94 (2008)Google Scholar
  3. 3.
    Li, P., Zhang, C., Perkins, E.J., Gong, P., Deng, Y.: Comparison of probabilistic boolean network and dynamic bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 8(suppl. 7), S13 (2007)Google Scholar
  4. 4.
    Filkov, V.: Identifying gene regulatory networks from gene expression data. Handbook of Computational Molecular Biology, 27-1 (2005)Google Scholar
  5. 5.
    Liu, B., Thiagarajan, P.S., Hsu, D.: Probabilistic approximations of signaling pathway dynamics. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS (LNBI), vol. 5688, pp. 251–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic bayesian networks. Briefings in Bioinformatics 4(3), 228–235 (2003)CrossRefGoogle Scholar
  7. 7.
    Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 139–147. Morgan Kaufmann Publishers Inc. (1998)Google Scholar
  8. 8.
    Zoppoli, P., Morganella, S., Ceccarelli, M.: TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. Bmc Bioinformatics 11(1), 154 (2010)CrossRefGoogle Scholar
  9. 9.
    Fujita, A., Sato, J., Garay-Malpartida, H., Yamaguchi, R., Miyano, S., Sogayar, M., Ferreira, C.: Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biology 1,  39 (2007)Google Scholar
  10. 10.
    Rajapakse, J.C., Mundra, P.A.: Stability of building gene regulatory networks with sparse autoregressive models. BMC Bioinformatics 12(suppl. 13), S17 (2011)Google Scholar
  11. 11.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis, A.: Conditional variable importance for random forests. BMC Bioinformatics 9(1), 307 (2008)CrossRefGoogle Scholar
  13. 13.
    Cutler, A., Cutler, D.R., Stevens, J.R.: Tree-based methods. High-Dimensional Data Analysis in Cancer Research, 1–19 (2009)Google Scholar
  14. 14.
    Boulesteix, A.L., Janitza, S., Kruppa, J., König, I.R.: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics (2012)Google Scholar
  15. 15.
    Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS One 5(9), e12776 (2010)Google Scholar
  16. 16.
    Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. Chapman & Hall/CRC (1984)Google Scholar
  17. 17.
    Pagano, M., Gauvreau, K., Pagano, M.: Principles of biostatistics. Duxbury Pacific Grove^ eCA CA (2000)Google Scholar
  18. 18.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Marbach, D., Schaffter, T., Mattiussi, C., Floreano, D.: Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology 16(2), 229–239 (2009)CrossRefGoogle Scholar
  20. 20.
    Simon, I., Barnett, J., Hannett, N., Harbison, C.T., Rinaldi, N.J., Volkert, T.L., Wyrick, J.J., Zeitlinger, J., Gifford, D.K., Jaakkola, T.S., et al.: Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106(6), 697–708 (2001)CrossRefGoogle Scholar
  21. 21.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9(12), 3273–3297 (1998)CrossRefGoogle Scholar
  22. 22.
    Husmeier, D.: Inferring dynamic bayesian networks with mcmc (2003), http://www.bioss.ac.uk/~dirk/software/DBmcmc/index.html
  23. 23.
    Bansal, M., Della Gatta, G., Di Bernardo, D.: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22(7), 815–822 (2006)CrossRefGoogle Scholar
  24. 24.
    Haifen, C., Maduranga, D., Mundra, P., Zheng, J.: Integrating epigenetic prior in dynamic bayesian network for gene regulatory network inference. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (accepted, 2013)Google Scholar
  25. 25.
    Mundra, P., Niranjan, M., Welsch, R., Zheng, J., Rajapakse, J.: Inferring time-delayed gene regulatory networks using cross-correlation and sparse regression. In: 9th International Symposium on Bioinformatics Research and Applications (accepted, 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • D. A. K. Maduranga
    • 1
  • Jie Zheng
    • 1
    • 2
  • Piyushkumar A. Mundra
    • 1
  • Jagath C. Rajapakse
    • 1
    • 3
    • 4
  1. 1.Bioinformatics Research Center, School of Computer EngineeringNanyang Technological UniversitySingapore
  2. 2.Genome Institute of SingaporeSingapore
  3. 3.Singapore-MIT AllianceSingapore
  4. 4.Department of Biological EngineeringMassachusetts Institute of TechnologyUSA

Personalised recommendations