Skip to main content

Evaluation of Optimized Visualization of LiDAR Point Clouds, Based on Visual Perception

  • Conference paper
Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data (HCI-KDD 2013)

Abstract

This paper presents a visual perception evaluation of efficient visualization for terrain data obtained by LiDAR technology. Firstly, we briefly summarize a proposed hierarchical data structure and discuss its advantages. Then two level-of-detail rendering algorithms are presented. The experimental results are then provided regarding the performance and rendering qualities for both approaches. The evaluation of the results is finally discussed in regard to the visual and spatial perceptions of human observers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Briese, C., Norbert, P., Dorninger, P.: Applications of the robust interpolation for DTM determination. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 34, 55–61 (2002)

    Google Scholar 

  2. Lienert, B.R., Sharma, S.K., Porter, J.N.: Real Time Analysis and Display of Scanning Lidar Scattering Data. Marine Geodesy 22, 259–265 (1999)

    Article  Google Scholar 

  3. Mongus, D., Žalik, B.: Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS Journal of Photogrammetry and Remote Sensing 67, 1–12 (2012)

    Article  Google Scholar 

  4. Wehr, A., Lohr, U.: Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing 54, 68–82 (1999)

    Article  Google Scholar 

  5. Mongus, D., Žalik, B.: Efficient method for lossless LIDAR data compression. International Journal of Remote Sensing 32, 2507–2518 (2011)

    Article  Google Scholar 

  6. Persson, Å., Söderman, U., Töpel, J., Ahlberg, S.: Visualization and analysis of full-waveform airborne laser scanner data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36, 103–108 (2005)

    Google Scholar 

  7. Gregory, R.L.: Eye and Brain: The psychology of seeing. Princeton University Press (1997)

    Google Scholar 

  8. Bartz, D., Meißner, M., Hüttner, T.: OpenGL-assisted occlusion culling for large polygonal models. Computers & Graphics 23, 667–679 (1999)

    Article  Google Scholar 

  9. Scher Zagier, E.J.: A human’s eye view: motion blur and frameless rendering. Crossroads 3, 8–12 (1997)

    Google Scholar 

  10. Liu, N.L.N., Jin, H.J.H., Rockwood, A.P.: Antialiasing by Gaussian integration. IEEE Computer Graphics and Applications 16, 58–63 (1996)

    Google Scholar 

  11. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of detail for 3D graphics. Morgan Kaufmann (2002)

    Google Scholar 

  12. Bittner, J., Wonka, P., Wimmer, M.: Visibility preprocessing for urban scenes using line space subdivision. In: Proceedings of Ninth Pacific Conference on Computer Graphics and Applications, pp. 276–284 (2001)

    Google Scholar 

  13. Smets, G.J.F., Overbeeke, K.J.: Trade-off between resolution and interactivity in spatial task performance. IEEE Computer Graphics and Applications 15, 46–51 (1995)

    Article  Google Scholar 

  14. Clark, J.H.: Hierarchical geometric models for visible surface algorithms. Communications of the ACM 19, 547–554 (1976)

    Article  MATH  Google Scholar 

  15. Schachter, B.J.: Computer Image Generation for Flight Simulation. IEEE Computer Graphics and Applications 1, 29–68 (1981)

    Article  Google Scholar 

  16. Garland, M., Heckbert, P.: Simplification using Quadric Error Metrics. In: Proceedings of SIGGRAPH, pp. 209–216 (1997)

    Google Scholar 

  17. Klein, R., Liebich, G., Strasser, W.: Mesh reduction with error control. In: Proceedings of Visualization 1996, pp. 311–318 (1996)

    Google Scholar 

  18. Erikson, C., Manocha, D., Baxter III, W.V.: HLODs for faster display of large static and dynamic environments. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 111–120. ACM, New York (2001)

    Chapter  Google Scholar 

  19. Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Brooks, F., Wright, W.: Simplification envelopes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 119–128. ACM, New York (1996)

    Google Scholar 

  20. Falby, J.S., Zyda, M.J., Pratt, D.R., Mackey, R.L.: NPSNET: Hierarchical data structures for real-time three-dimensional visual simulation. Computers & Graphics 17, 65–69 (1993)

    Article  Google Scholar 

  21. Astheimer, P., Pöche, M.-L.: Level-of-detail generation and its application in virtual reality. In: Proceedings of the Conference on Virtual Reality Software and Technology, pp. 299–309. World Scientific Publishing Co., Inc., River Edge (1994)

    Chapter  Google Scholar 

  22. Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L.F., Faust, N., Turner, G.A.: Real-time, continuous level of detail rendering of height fields. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 109–118. ACM, New York (1996)

    Google Scholar 

  23. Ferguson, R.L., Economy, R., Kelly, W.A., Ramos, P.P.: Continuous terrain level of detail for visual simulation. In: Proceedings of IMAGE V Conference, pp. 144–151 (1990)

    Google Scholar 

  24. Scarlatos, L.L.: A refined triangulation hierarchy for multiple levels of terrain detail. In: Proceedings of IMAGE V Conference, pp. 114–122 (1990)

    Google Scholar 

  25. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108. ACM, New York (1996)

    Google Scholar 

  26. Hoppe, H.: Efficient implementation of progressive meshes. Computers & Graphics 22, 27–36 (1998)

    Article  Google Scholar 

  27. Hoppe, H.: View-dependent refinement of progressive meshes. In: Proceedings of ACM SIGGRAPH, pp. 189–198 (1997)

    Google Scholar 

  28. Hoppe, H.: Smooth view-dependent level-of-detail control and its application to terrain rendering. In: Proceedings of Visualization 1998, pp. 35–42 (1998)

    Google Scholar 

  29. Kovač, B., Žalik, B.: Visualization of LIDAR datasets using point-based rendering technique. Computers & Geosciences 36, 1443–1450 (2010)

    Article  Google Scholar 

  30. Kuder, M., Žalik, B.: Web-Based LiDAR Visualization with Point-Based Rendering. In: 2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems, pp. 38–45. IEEE (2011)

    Google Scholar 

  31. O’Sullivan, C., Howlett, S., Morvan, Y., McDonnell, R., O’Conor, K.: Perceptually adaptive graphics. State of the Art Report EUROGRAPHICS 4 (2004)

    Google Scholar 

  32. McNamara, A.: Visual Perception in Realistic Image Synthesis. Computer Graphics Forum 20, 211–224 (2001)

    Article  MATH  Google Scholar 

  33. Watson, B., Walker, N., Hodges, L.F.: Supra-threshold control of peripheral LOD. ACM Transactions on Graphics (TOG) 23, 750–759 (2004)

    Article  Google Scholar 

  34. Scoggins, R.K., Moorhead, R.J., Machiraju, R.: Enabling level-of-detail matching for exterior scene synthesis. In: Proceedings of the Conference on Visualization 2000, pp. 171–178. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  35. Cheng, I., Shen, R., Yang, X., Boulanger, P.: Perceptual Analysis of Level-of-Detail: The JND Approach. In: Eighth IEEE International Symposium on Multimedia (ISM 2006), pp. 533–540. IEEE (2006)

    Google Scholar 

  36. Levoy, M., Whitaker, R.: Gaze-directed volume rendering. ACM SIGGRAPH Computer Graphics 24, 217–223 (1990)

    Article  Google Scholar 

  37. Samberg, A.: An Implemetation of the ASPRS LAS Standard. In: Proceedings of the ISPRS Workshop Laser Scanning 2007 and SilviLaser 2007, vol. 36, pp. 363–372 (2007)

    Google Scholar 

  38. Cozzi, P., Riccio, C.: OpenGL Insights. CRC Press (2012)

    Google Scholar 

  39. Applegate, R.A., Ballentine, C., Gross, H., Sarver, E.J., Sarver, C.A.: Visual acuity as a function of Zernike mode and level of root mean square error. Optometry and Vision Science 80, 97–105 (2003)

    Article  Google Scholar 

  40. Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing 16, 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  41. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600–612 (2004)

    Article  Google Scholar 

  42. Bradley, A.P.: A wavelet visible difference predictor. IEEE Transactions on Image Processing 8, 717–730 (1999)

    Article  Google Scholar 

  43. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Transactions on Image Processing 15, 430–444 (2006)

    Article  Google Scholar 

  44. Mittal, A., Soundararajan, R., Bovik, A.: Making a Completely Blind Image Quality Analyzer. IEEE Signal Processing Letters, 1 (2012)

    Google Scholar 

  45. Moorthy, A.K., Bovik, A.C.: A two-stage framework for blind image quality assessment. IEEE Signal Processing Letters 17, 513–516 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pečnik, S., Mongus, D., Žalik, B. (2013). Evaluation of Optimized Visualization of LiDAR Point Clouds, Based on Visual Perception. In: Holzinger, A., Pasi, G. (eds) Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data. HCI-KDD 2013. Lecture Notes in Computer Science, vol 7947. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39146-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39146-0_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39145-3

  • Online ISBN: 978-3-642-39146-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics