Some Meeting Points of Singularity Theory and Low Dimensional Topology

  • Andras Némethi
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 23)


We review some basic facts which connect the deformation theory of normal surface singularities with the topology of their links. The presentation contains some explicit descriptions for certain families of singularities (cyclic quotients, sandwiched singularities).


Minimal Resolution Open Book Milnor Number Plane Curve Singularity Rational Homology Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akhmedov, A., Etnyre, J. B., Mark, T. E. and Smith, I., A note on Stein fillings of contact manifolds, Math. Res. Lett., 15, no. 6 (2008), 1127–1132.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Arndt, J., Verselle Deformationen zyklischer Quotientensingularitäten, Diss. Hamburg, 1988.Google Scholar
  3. [3]
    Artin, M., Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. of Math., 84 (1962), 485–496.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Artin, M., On isolated rational singularities of surfaces, Amer. J. of Math., 88 (1966), 129–136.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Artin, M., Algebraic construction of Brieskorn’s resolutions, J. of Algebra, 29 (1974), 330–348.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Balke, L., Smoothings of cyclic quotient singularities from a topological point of view, arXiv:math/9911070.Google Scholar
  7. [7]
    Barth, W., Peters, C. and Van de Ven, A., Compact Complex Surfaces, Springer-Verlag, 1984.Google Scholar
  8. [8]
    Behnke, K. and Knörrer, H., On infinitesimal deformations of rational surface singularities, Comp. Math., 61 (1987), 103–127.zbMATHGoogle Scholar
  9. [9]
    Behnke, K. and Riemenschneider, O., Quotient surface singularities and their deformations, in: Singularity theory, D. T. Lê, K. Saito & B. Teissier eds., World Scientific, 1995, 1–54.Google Scholar
  10. [10]
    Bhupal, M. and Ono, K., Symplectic fillings of links of quotient surface singularities, arXiv:0808.3794.Google Scholar
  11. [11]
    Bogomolov, F. A. and de Oliveira, B., Stein Small Deformations of Strictly Pseudoconvex Surfaces, Contemporary Mathematics, 207 (1997), 25–41.CrossRefGoogle Scholar
  12. [12]
    Braun, G. and Némethi, A., Surgery formula for Seiberg-Witten invariants of negative definite plumbed 3-manifolds, J. reine angew. Math., 638 (2010), 189–208.zbMATHMathSciNetGoogle Scholar
  13. [13]
    Briançon J. and Speder, J., Les conditions de Whitney impliquent “μ* constant”, Ann. Inst. Fourier (Grenoble), 26 (1976), 153–164.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Brieskorn, E., Die Auflösung der rationalen Singularitäten holomorpher Abbildungen, Math. Ann., 178 (1968), 255–270.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Brieskorn, E., Singular elements in semi-simple algebraic groups, Proc. Int. Con. Math. Nice, 2 (1971), 279–284.MathSciNetGoogle Scholar
  16. [16]
    Caubel, C., and Popescu-Pampu, P., On the contact boundaries of normal surface singularities, C. R. Acad. Sci. Paris, Ser. I 339 (2004), 43–48.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Caubel, C., Némethi, A. and Popescu-Pampu, P., Milnor open books and Milnor fillable contact 3-manifolds, Topology, 45 (2006), 673–689.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    Christophersen, J. A., On the components and discriminant of the versal base space of cyclic quotient singularities; in: Singularity theory and its applications, Warwick 1989, Part I, D. Mond, J. Montaldi eds., LNM 1462, Springer, 1991.Google Scholar
  19. [19]
    Christophersen, J. A. and Gustavsen, T. S., On infinitesimal deformations and obstructions for rational surface singularities, J. Algebraic Geometry, 10 (1) (2001), 179–198.zbMATHMathSciNetGoogle Scholar
  20. [20]
    Colin, V., Giroux, E., Honda, K., Finitude homotopique et isotopique des structures de contact tendues, Publ. Math. Inst. Hautes Études Sci., 109 (2009), 245–293.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    Demazure, M., Pinkham, H., Teissier, B. (editors), Séminaire sur les Singularités des Surfaces, Lecture Notes of Math., 777, Springer-Verlag, 1980.Google Scholar
  22. [22]
    Durfee, A., The Signature of Smoothings of Complex Surface Singularities, Math. Ann., 232 (1978), 85–98.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    Durfee, A., Fifteen characterizations of rational double points and simple critical points, L’enseignement Math., 25 (1979), 131–163.MathSciNetGoogle Scholar
  24. [24]
    Eisenbud, D. and Neumann, W., Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. of Math. Studies, 110, Princeton University Press, 1985.Google Scholar
  25. [25]
    Eliashberg, Y., Filling by holomorphic discs and its applications, Geometry of lowdimensional manifolds, 2 (Durham, 1989), 45–67, London Math. Soc. Lecture Note Ser., 151, Cambridge Univ. Press, 1990.Google Scholar
  26. [26]
    Elkik, R., Singularités rationelles et Déformations, Inv. Math., 47 (1978), 139–147.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    Etnyre, J. and Ozbagci, B., Invariants of contact structures from open books, Trans. AMS, 360 (6) (2008), 3133–3151.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    Giroux, E., Structures de contact en dimension trois et bifurcations des foilletages de surfaces, Invent. Math., 141 (2000), 615–689.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    Giroux, E., Structures de contact sur les variétés fibrées en cercles au-dessus d’une surface, Comment. Math. Helv., 76 (2001), 218–262.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    Giroux, E., Géometrie de contact: de la dimension trois vers les dimensions supérieures, Proc. ICM, Beijing 2002, Vol. II., 405–414.MathSciNetGoogle Scholar
  31. [31]
    Grauert, H., Über Modifikationen und exceptionelle analytische Mengen, Math. Annalen, 146 (1962), 331–368.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    Grauert, H., Über die Deformationen Isolierten Singularitäten Analytischer Mengen, Inv. Math., 15 (1972), 171–198.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    Greuel, G.-M. and Steenbrink, J., On the topology of smoothable singularities, Proc. of Symp. in Pure Math., 40, Part 1 (1983), 535–545.CrossRefMathSciNetGoogle Scholar
  34. [34]
    Hartshorne, R., Algebraic Geometry, Graduate Texts in Math., 52, Springer-Verlag 1977.Google Scholar
  35. [35]
    Honda, K., On the classification of tight contact structures I., Geom. Topol., 4 (2000), 309–368.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    Honda, K., On the classification of tight contact structures II., J. Differential Geom. 55 (2000), 83–143.zbMATHMathSciNetGoogle Scholar
  37. [37]
    de Jong, T. and van Straten, D., On the base space of a semi-universal deformation of rational quadruple points, Annals of Math., 134 (2) (1991), 653–678.CrossRefzbMATHGoogle Scholar
  38. [38]
    de Jong, T. and van Straten, D., On the deformation theory of rational surface singularities with reduced fundamental cycle, J. Alg. Geom., 3 (1994), 117–172.zbMATHGoogle Scholar
  39. [39]
    de Jong, T. and van Straten, D., Deformation theory of sandwiched singularities, Duke Math. J., 95 (3) (1998), 451–522.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    Kollár, J. and Shepherd-Barron, N. I., Threefolds and deformations of surface singularities, Invent. Math., 91 (1988), 299–338.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    Kollár, J., Flips, flops, minimal models, etc., Surveys in Diff. Geom., 1 (1991), 113–199.CrossRefGoogle Scholar
  42. [42]
    Laufer, H. B., Normal two-dimensional singularities, Annals of Math. Studies, 71, Princeton University Press, 1971.Google Scholar
  43. [43]
    Laufer, H. B., On rational singularities, Amer. J. of Math., 94 (1972), 597–608.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    Laufer, H. B., Taut two-dimensional singularities, Math. Ann., 205 (1973), 131–164.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    Laufer, H. B., On minimally elliptic singularities, Amer. J. of Math., 99 (1977), 1257–1295.CrossRefzbMATHMathSciNetGoogle Scholar
  46. [46]
    Laufer, H. B., On μ for surface singularities, Proceedings of Symposia in Pure Math., 30 (1977), 45–49.CrossRefMathSciNetGoogle Scholar
  47. [47]
    Laufer, H. B., Weak simultaneous resolution for deformations of Gorenstein surface singularities, Proc. of Symp. in Pure Math., 40, Part 2 (1983), 1–29.CrossRefMathSciNetGoogle Scholar
  48. [48]
    Laufer, H. B., Strong Simultaneous Resolution for Surface Singularities, Adv. Studies in Pure Math., 8 (1986), 207–214. Complex Analytic Singularities.MathSciNetGoogle Scholar
  49. [49]
    Laufer, H. B., The multiplicity of isolated two-dimensional hypersurface singularities, Transactions of the AMS, 302, Number 2 (1987), 489–496.CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    Lê Dũng Tráng, Topologie des singularités des hypersurfaces complexes, Astérisque, 7–8 (1973), 171–182.Google Scholar
  51. [51]
    Lipman, J., Double point resolutions of deformations of rational singularities, Compositio Math., 38 (1979), 37–42.zbMATHMathSciNetGoogle Scholar
  52. [52]
    Lisca, P., On lens spaces and their symplectic fillings, Math. Res. Letters, 1, vol. 11 (2004), 13–22.CrossRefMathSciNetGoogle Scholar
  53. [53]
    Lisca, P., On symplectic fillings of lens spaces, Trans. Amer. Math. Soc., 360 (2008), 765–799.CrossRefzbMATHMathSciNetGoogle Scholar
  54. [54]
    Lisca, P. and Stipsicz, A. I., On the existence of tight contact structures on Seifert fibered 3-manifolds, Duke Math. J., 148m no. 2, (2009), 175–209.CrossRefzbMATHMathSciNetGoogle Scholar
  55. [55]
    Looijenga, E., The smoothing components of a triangle singularity. I, Proc. of Symp. in Pure Math., 40, Part 2, (1983), 173–183.CrossRefMathSciNetGoogle Scholar
  56. [56]
    Looijenga, E. J. N., Isolated Singular Points on Complete Intersections, London Math. Soc. Lecture Note Series, 77, Cambridge University Press 1984.Google Scholar
  57. [57]
    Looijenga, E., Riemann-Roch and smoothing of singularities, Topology, 25 (3) (1986), 293–302.CrossRefzbMATHMathSciNetGoogle Scholar
  58. [58]
    Looijenga, E. and Wahl, J., Quadratic functions and smoothing surface singularities, Topology, 25 (1986), 261–291.CrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    McDuff, D., The structure of rational and ruled symplectic 4-manifolds, J. Amer. Math. Soc., 3, no. 3, (1990), 679–712.zbMATHMathSciNetGoogle Scholar
  60. [60]
    Milnor, J., Singular points of complex hypersurfaces, Annals of Math. Studies, 61, Princeton University Press, 1968.Google Scholar
  61. [61]
    Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, IHES Publ. Math., 9 (1961), 5–22.CrossRefzbMATHMathSciNetGoogle Scholar
  62. [62]
    Némethi, A., Five lectures on normal surface singularities, lectures delivered at the Summer School in Low dimensional topology, Budapest, Hungary, 1998; Bolyai Society Math. Studies, 8 (1999), 269–351.Google Scholar
  63. [63]
    Némethi, A., “Weakly” Elliptic Gorenstein Singularities of Surfaces, Inventiones Math., 137 (1999), 145–167.CrossRefzbMATHGoogle Scholar
  64. [64]
    Némethi, A., The resolution of some surface singularities, I., (cyclic coverings); Proceedings of the AMS Conference, San Antonio, 1999; Contemporary Mathematics, 266, 89–128.CrossRefGoogle Scholar
  65. [65]
    Némethi, A., , August 2002; Contemporary Mathematics, 354 (2004), 161–208.Google Scholar
  66. [66]
    Némethi, A., The cohomology of line bundles of splice-quotient singularities, arXiv:0810.4129.Google Scholar
  67. [67]
    Némethi, A. and Nicolaescu, L. I., Seiberg-Witten invariants and surface singularities, Geometry and Topology, Volume 6 (2002), 269–328.CrossRefzbMATHMathSciNetGoogle Scholar
  68. [68]
    Némethi, A. and Nicolaescu, L. I., Seiberg-Witten invariants and surface singularities II (singularities with good C*-action), Journal of London Math. Soc. (2), 69 (2004), 593–607.CrossRefzbMATHGoogle Scholar
  69. [69]
    Némethi, A. and Nicolaescu, L. I., Seiberg-Witten invariants and surface singularities III (splicings and cyclic covers), Selecta Mathematica, New series, Vol. 11, Nr. 3–4 (2005), 399–451.zbMATHMathSciNetGoogle Scholar
  70. [70]
    Némethi, A. and Okuma, T., On the Casson invarint conjecture of Neumann-Wahl, J. of Algebraic Geometry, 18 (2009), 135–149.CrossRefzbMATHGoogle Scholar
  71. [71]
    Némethi, A. and Okuma, T., The Seiberg-Witten invariant conjecture for splice-quotients, J. of London Math. Soc., 28 (2008), 143–154.CrossRefGoogle Scholar
  72. [72]
    Némethi, A. and Popescu-Pampu, P., On the Milnor fibers of cyclic quotient singularities, Proc. London Math. Soc., 101(2) (2010), 497–553.CrossRefGoogle Scholar
  73. [73]
    Némethi, A. and Popescu-Pampu, P., On the Milnor fibers of sandwiched singularities, Int. Math. Res. Not., 6 (2010), 1041–1061.Google Scholar
  74. [74]
    Némethi, A. and Tosun, M., Invariants of open books of links of surface singularities, Studia Sc. Math. Hungarica, 48(1) (2011), 135–144.zbMATHGoogle Scholar
  75. [75]
    Neumann, W. D., A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Transactions of the AMS, 268, Number 2, (1981), 299–344.CrossRefzbMATHGoogle Scholar
  76. [76]
    Neumann, W. D. and Pichon, A., Complex analytic realization of links, Intelligence of low dimensional topology 2006, 231–238, Ser. Knots Everything, 40, World Sci. Publ., Hackensack, NJ, 2007.Google Scholar
  77. [77]
    Neumann, W. and Wahl, J., Complex surface singularities with integral homology sphere links, Geometry and Topology, 9 (2005), 757–811.CrossRefzbMATHMathSciNetGoogle Scholar
  78. [78]
    Neumann, W. and Wahl, J., Complete intersection singularities of splice type as universal abelian covers, Geometry and Topology, 9 (2005), 699–755.CrossRefzbMATHMathSciNetGoogle Scholar
  79. [79]
    Okuma, T., The geometric genus of splice-quotient singularities, Transaction AMS, 360 (2008), 6643–6659.CrossRefzbMATHMathSciNetGoogle Scholar
  80. [80]
    Ohta, H. and Ono, K., Symplectic fillings of the link of simple elliptic singularities, J. reine angew. Math., 565 (2003), 183–205.zbMATHMathSciNetGoogle Scholar
  81. [81]
    Ohta, H. and Ono, K., Simple singularities and symplectic fillings, J. Differential Geom., 69 (2005), 1–42.zbMATHMathSciNetGoogle Scholar
  82. [82]
    Ohta, H. and Ono, K., Examples of isolated surface singularities whose links have infinitely many symplectic fillings, J. Fixed Point Theory Appl., 3 (2008), 51–56.CrossRefzbMATHMathSciNetGoogle Scholar
  83. [83]
    Orlik, P. and Wagreich, Ph., Isolated singularities of algebraic surfaces with ℂ* action, Ann. of Math. (2), 93 (1971), 205–228.CrossRefzbMATHMathSciNetGoogle Scholar
  84. [84]
    Orlik, P. and Wagreich, P., Algebraic surfaces with k*-action, Acta Math., 138 (1977), 43–81.CrossRefzbMATHMathSciNetGoogle Scholar
  85. [85]
    Ozbagci, B. and Stipsicz, A., Contact 3-manifolds with infinitely many Stein fillings, Proc. AMS, 132 (2004), 1549–1558.CrossRefzbMATHMathSciNetGoogle Scholar
  86. [86]
    Pinkham, H., Deformations of algebraic varieties with G m action, Astérisque, 20 (1974), 1–131.zbMATHMathSciNetGoogle Scholar
  87. [87]
    Pinkham, H., Normal surface singularities with ℂ* action, Math. Ann., 117 (1977), 183–193.CrossRefMathSciNetGoogle Scholar
  88. [88]
    Pinkham, H., Smoothing of the D pqr singularities, p + q + r = 22, Proc. of Symp. in Pure Math., 40, Part 2, (1983), 373–377.CrossRefMathSciNetGoogle Scholar
  89. [89]
    Popescu-Pampu, P., The geometry of continued fractions and the topology of surface singularities, in Singularities in Geometry and Topology 2004, Advanced Studies in Pure Mathematics, 46 (2007), 119–195.Google Scholar
  90. [90]
    Popescu-Pampu, P., Numerically Gorenstein surface singularities are homeomorphic to Gorenstein ones, Duke Math. Journal, 159, No. 3, (2011), 539–559.CrossRefzbMATHMathSciNetGoogle Scholar
  91. [91]
    Reid, M., Chapters on Algebraic Surfaces, in: Complex Algebraic Geometry, IAS/Park City Mathematical Series, Volume 3 (J. Kollár editor), 3–159, 1997.Google Scholar
  92. [92]
    Riemenschneider, O., Bemerkungen zur Deformationstheorie Nichtrationaler Singularitäten, Manus. Math., 14 (1974), 91–99.CrossRefzbMATHMathSciNetGoogle Scholar
  93. [93]
    Riemenschneider, O., Deformationen von Quotintensingularitäten (nach zyklischen Gruppen), Math. Ann., 209 (1974), 211–248.CrossRefzbMATHMathSciNetGoogle Scholar
  94. [94]
    Schaps, M., Deformations of Cohen-Macauley Schemes of codimension 2 and Non-Singular Deformations of Space Curves, Am. J. Math., 99 (1977), 669–685.CrossRefzbMATHMathSciNetGoogle Scholar
  95. [95]
    Schlessinger, M., Functors of Artin Rings, Trans. AMS, 130 (1968), 208–222.CrossRefzbMATHMathSciNetGoogle Scholar
  96. [96]
    Seade, J. A., A cobordism invariant for surface singularities, Proc. of Symp. in Pure Math., 40(2) (1983), 479–484.CrossRefMathSciNetGoogle Scholar
  97. [97]
    Smith, I., Torus fibrations on symplectic four-manifolds, Turkish J. Math., 25, no. 1, (2001), 69–95.zbMATHMathSciNetGoogle Scholar
  98. [98]
    Spivakovsky, M., Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Annals of Math., 131 (1990), 411–491.CrossRefzbMATHMathSciNetGoogle Scholar
  99. [99]
    Steenbrink, J. H. M., Mixed Hodge structures associated with isolated singularities, Proc. Symp. Pure Math., 40, Part 2 (1983), 513–536.CrossRefMathSciNetGoogle Scholar
  100. [100]
    Stevens, J., Elliptic Surface Singularities and Smoothings of Curves, Math. Ann., 267 (1984), 239–247.CrossRefzbMATHMathSciNetGoogle Scholar
  101. [101]
    Stevens, J., On the versal deformation of cyclic quotient singularities, LNM, 1462 (1991), 302–319. (Singularity theory and its applications, Warwick 1989)MathSciNetGoogle Scholar
  102. [102]
    Stevens, J., Partial resolutions of rational quadruple points, Int. J. of Math., 2 (2) (1991), 205–221.CrossRefzbMATHMathSciNetGoogle Scholar
  103. [103]
    Stevens, J., Deformations of singularities, Springer LNM 1811, 2003.Google Scholar
  104. [104]
    Teissier, B., Cycles évanescents, sections planes et conditions de Whitney, Asterisque, 7–8 (1973), 285–362.MathSciNetGoogle Scholar
  105. [105]
    Teissier, B., Déformation à type topologique constant II, Séminaire Douady-Verdier 1972.Google Scholar
  106. [106]
    Teissier, B., Résolution simultanée I, II, LNM, 777 (1980), 71–146.MathSciNetGoogle Scholar
  107. [107]
    Tjurina, G.-N., Locally Flat Deformations of Isolated Singularities of Complex Spaces, Math. USSR Izvestia, 3 (1969), 967–999.CrossRefGoogle Scholar
  108. [108]
    Tomari, M., A p g-formula and elliptic singularities, Publ. R. I. M. S. Kyoto University, 21 (1985), 297–354.CrossRefzbMATHMathSciNetGoogle Scholar
  109. [109]
    Ustilovsky, I., Infinitely many contact structures on S4m+1, I.M.R.N., 14 (1999), 781–792.MathSciNetGoogle Scholar
  110. [110]
    Vaquié, M., Résolution simultanée de surfaces normales, Ann. Inst. Fourier, 35 (1985), 1–38.CrossRefzbMATHGoogle Scholar
  111. [111]
    Wagreich, Ph., Elliptic singularities of surfaces, Amer. J. of Math., 92 (1970), 419–454.CrossRefzbMATHMathSciNetGoogle Scholar
  112. [112]
    Wahl, M. J., Equisingular deformations of normal surface singularities, I, Ann. of Math., 104 (1976), 325–356.CrossRefzbMATHMathSciNetGoogle Scholar
  113. [113]
    Wahl, M. J., Simultaneous resolution of rational singularities, Compositio Math., 38 (1) (1979), 43–54.zbMATHMathSciNetGoogle Scholar
  114. [114]
    Wahl, M. J., Elliptic Deformations of Minimally Elliptic Singularities, Math. Ann., 253 (1980), 241–262.CrossRefzbMATHMathSciNetGoogle Scholar
  115. [115]
    Wahl, J., Smoothings of normal surface singularities, Topology, 20 (1981), 219–246.CrossRefzbMATHMathSciNetGoogle Scholar
  116. [116]
    Yau, S. S.-T., On maximally elliptic singularities, Transactions of the AMS, 257, Number 2 (1980), 269–329.CrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Andras Némethi
    • 1
  1. 1.Rényi Institute of MathematicsBudapestHungary

Personalised recommendations