Skip to main content

Structural Modification of Ti-MWW: A Door to Diversity

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Post-treatment converting 3D Ti-MWW zeolite to 2D Ti-MWW zeolite with the aid of ammonium molecules and subsequent calcination can largely increase the hydrophobicity of Ti-MWW zeolite and its catalytic performance. Moreover, the Ti-MWW lamellar precursor with weak hydrogen bonds in the interlayer space can also be structurally modified by swelling, partial or full delamination, and pillaring. The modified structures including partial or full delaminated and pillared structures possessed larger external surface area and higher accessibility than the conventional 3D Ti-MWW zeolite, which then showed higher conversion rate in the liquid oxidation reactions, especially, in the epoxidation of large-size cyclohexene molecule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zeolite structure database (2013) http://www.iza-online.org

  2. Choi M, Na K, Kim J et al (2009) Stable sigle-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–250

    Article  CAS  Google Scholar 

  3. Roth WJ, Shvets OV, Shamzhy M et al (2011) Postsynthesis transformation of three-dimensional framework into a lamellar zeolite with modifiable architecture. J Am Chem Soc 133:6130–6133

    Article  CAS  Google Scholar 

  4. Verheyen E, Joos L, Van Havenbergh K et al (2012) Design of zeolite by inverse sigma transformation. Nat Mater 11:1059–1064

    CAS  Google Scholar 

  5. Corma A, Diaz U, Domine ME (2000) New aluminosilicate and titanosilicate delaminated materials active for acid catalysis, and oxidation reactions using H2O2. J Am Chem Soc 122:2804–2809

    Article  CAS  Google Scholar 

  6. Corma A, Fornés V, Díaz U (2001) ITQ-18 a new delaminated stable zeolite. Chem Commun 24:2642–2643

    Article  Google Scholar 

  7. Xu H, Yang B, Jiang J et al (2013) Post-synthesis and adsorption properties of interlayer-expanded PLS-4 zeolite. Micropor Mesopor Mater 169:88–96

    Article  CAS  Google Scholar 

  8. Wu P, Nuntasri D, Ruan J et al (2004) Delamination of Ti-MWW and high efficiency in epoxidation of alkenes with various molecular sizes. J Phys Chem B 108:19126–19131

    Article  CAS  Google Scholar 

  9. Wang L, Wang Y, Liu Y et al (2008) Post-transformation of MWW-type lamellar precursors into MCM-56 analogues. Micropro Mesopro Mater 113:435–444

    Article  CAS  Google Scholar 

  10. Kim S-Y, Ban H-J, Ahn W-S (2007) Ti-MCM-36: a new mesoporous epoxidation catalyst. Catal Lett 113:160–164

    Article  CAS  Google Scholar 

  11. Wu P, Ruan J, Wang L et al (2008) Methodology for synthesizing crystalline metallosilicates with expanded pore windows through molecular alkoxysilylation of zeolitic lamellar precursors. J Am Chem Soc 130:8178–8187

    Article  CAS  Google Scholar 

  12. Wang L, Wang Y, Liu Y et al (2009) Alkoxysilylation of Ti-MWW lamellar precursors into interlayer pore-expanded titanosilicates. J Mater Chem 19:8594–8602

    Article  CAS  Google Scholar 

  13. Schreyeck L, Caullet P, Mougenel JC et al (1996) PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Micropor Mater 6:259–271

    Article  CAS  Google Scholar 

  14. Ikeda T, Akiyama Y, Oumi Y et al (2004) The topotactic conversion of a novel layered silicate into a new framework zeolite. Angew Chem Int Ed 43:4892–4896

    Article  CAS  Google Scholar 

  15. Wang YX, Gies H, Marler B et al (2005) Synthesis and crystal structure of zeolite RUB-41 obtained as calcination product of a layered precursor: a systematic approach to a new synthesis route. Chem Mater 17:43–49

    Article  Google Scholar 

  16. Wang L, Liu Y, Xie W et al (2008) Improving the hydrophobicity and oxidation activity of Ti-MWW by reversible structural rearrangement. J Phys Chem C 112:6132–6138

    Article  CAS  Google Scholar 

  17. Tatsumi T, Koyano KA, Igarashi N (1998) Remarkable activity enhancement by trimethylsilylation in oxidation of alkenes and alkanes with H2O2 catalyzed by titanium-containing mesoporous molecular sieves. Chem Commun 3:325–326

    Article  Google Scholar 

  18. Wu P, Tatsumi T, Komatsu T et al (2002) Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. Chem Mater 14:1657–1664

    Article  CAS  Google Scholar 

  19. Yamamoto K, Sakata Y, Nohara Y et al (2003) Organic–inorganic hybrid zeolites containing organic frameworks. Science 300:470–472

    Article  CAS  Google Scholar 

  20. Asefa T, MacLachan MJ, Coombs N et al (1999) Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402:867–871

    CAS  Google Scholar 

  21. Wu P, Komatsu T, Yashima T et al (1995) IR and MAS NMR studies on the incorporation of aluminum atoms into defect sites of dealuminated mordenites. J Phys Chem 99:10923–10931

    Article  CAS  Google Scholar 

  22. Nagy JB, Gabelica Z (1982) A cross-polarization magic-angle-spinning 29Si-n.m.r. indentification of the sianol group resonance in ZSM-5 zeolites. Chem Lett 11:1105–1108

    Article  Google Scholar 

  23. Boxhoorn G, Kortbeek AGTG, Hays GR et al (1984) A high-resolution solid-state 29Si n.m.r. study of ZSM-5 type zeolites. Zeolites 4:15–21

    Article  CAS  Google Scholar 

  24. Yamamura M, Chaki K, Wakatsuki T et al (1994) Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance foe ethylene oligomerization. Zeolite 14:643–649

    Article  CAS  Google Scholar 

  25. Roth WJ, Vartuli JC (2002) In: Sayari A, Jaroniec M (eds) Nanoporous materials III. Stud Surf Sci Catal, Vol 141. Elsevier, New York, p 273

    Google Scholar 

  26. Corma A, Díaz U, Fornés V et al (1999) Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides. Chem Commun 9:779–780

    Article  Google Scholar 

  27. Wang Y, Liu Y, Wang L et al (2009) Postsynthesis, characterization, and catalytic properties of aluminosilicates analogous to MCM-56. J Phys Chem C 113:18753–18760

    Article  CAS  Google Scholar 

  28. Juttu GG, Lobo RF (2000) Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Micropor Mesopor Mater 40:9–23

    Article  CAS  Google Scholar 

  29. Fung AS, Lawton SL, Roth WJ (1994) US Patent 5362697

    Google Scholar 

  30. He YJ, Nivarthy GS, Eder F et al (1998) Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Micropor Mesopor Mater 25:207–224

    Article  CAS  Google Scholar 

  31. Maheshwari S, Martínez C, Portilla MT et al (2010) Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36. J Catal 272:298–308

    Article  CAS  Google Scholar 

  32. Fan W, Wu P, Namba S et al (2004) A titanosilicate that is structurally analogous to an MWW-type lamellar precursor. Angew Chem Int Ed 43:236–240

    Article  CAS  Google Scholar 

  33. Fan W, Wu P, Namba S et al (2006) Synthesis and catalytic properties of a new titanosilicate molecular sieve with the structure analogous to MWW-type lamellar precursor. J Catal 243:183–191

    Article  CAS  Google Scholar 

  34. Ruan J, Wu P, Slater B et al (2005) Structure elucidation of the highly active titanosilicate catalyst Ti-YNU-1. Angew Chem 117:6877–6881

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Wu, P., Xu, H., Xu, L., Liu, Y., He, M. (2013). Structural Modification of Ti-MWW: A Door to Diversity. In: MWW-Type Titanosilicate. SpringerBriefs in Molecular Science(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39115-6_3

Download citation

Publish with us

Policies and ethics