Skip to main content

Three-Dimensional Object Representation Based on 2D UNL-Fourier Shape Descriptor

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7950))

Abstract

Thanks to the rapid development of graphical hardware and its lower costs, the practical usage of 3D-shape modelling in various applications has recently become very popular. In order to efficiently process the large number of 3D objects, specialised algorithms for representation and retrieval of these objects have to be developed. In this paper, such an algorithm is provided and experimentally investigated. The algorithm is composed of two main stages. The first of these renders several 2D projections for an analysed 3D object. The second uses the UNL-Fourier transform for the description of obtained planar contour shapes and a classification by means of the template matching approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Novotni, M., Klein, R.: Shape Retrieval Using 3D Zernike Descriptors. Computer-Aided Design 36(11), 1047–1062 (2004)

    Article  Google Scholar 

  2. Frejlichowski, D.: 3D Shape Description Algorithms Applied to the Problem of Model Retrieval. Central European Journal of Engineering 1(1), 117–121 (2011)

    Article  Google Scholar 

  3. Horn, B.: Extended Gaussian Images. Proc. of the IEEE A.I. Memo, No. 740 72(12), 1671–1686 (1984)

    Google Scholar 

  4. Kang, S., Ikeuchi, K.: Determining 3-D Object Pose Using the Complex Extended Guassian Image. In: Proc. of the CVPR, pp. 580–585 (1991)

    Google Scholar 

  5. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Matching 3D Models with Shape Distributions. In: Proc. of Int. Conf., SMI 2008, pp. 154–166 (2001)

    Google Scholar 

  6. Rea, H., Sung, R.C.W., Corney, J.R., Clark, D.E.R.: Identifying 3D object features using shape distributions. In: Proc. of the 18th International Conference on Computer-Aided Production Engineering (2003)

    Google Scholar 

  7. Liu, Y., Pu, J., Zha, H., Liu, W., Uehara, Y.: Thickness histogram and statistical Harmonic Representation for 3D model retrieval. In: Proc. of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (2004)

    Google Scholar 

  8. Ankerst, M., Kastenmüller, G., Kriegel, H.-P., Seidl, T.: 3D Shape Histograms for Similarity Search and Classification in Spatial Databases. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 207–226. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Corney, J., Rea, H., Clark, D., Pritchard, J., et al.: Coarse filters for shape matching. IEEE Computer Graphics and Applications 22(3), 65–74 (2002)

    Article  Google Scholar 

  10. Paquet, E., Murching, A., Naveen, T., et al.: Description of shape information for 2-D and 3-D objects. Signal Processing: Image Communication 15, 103–122 (2000)

    Article  Google Scholar 

  11. Zhang, C., Chen, T.: Indexing and retrieval of 3D models aided by active learning. In: Proc. ACM Multimedia, pp. 615–616 (2001)

    Google Scholar 

  12. Vranic, D.V., Saupe, D., Richter, J.: Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. In: Proc. of the IEEE 2001 Workshop on Multimedia Signal Processing (2001)

    Google Scholar 

  13. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes. In: Proc. of the 28th Conference on Computer Graphics and Interactive Techniques, pp. 203–212 (2001)

    Google Scholar 

  14. Tung, T., Schmitt, F.: Augmented Reeb graphs for content-based retrieval of 3D mesh models. In: Proc. of the Shape Modeling International, pp. 157–166 (2004)

    Google Scholar 

  15. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton Based Shape Matching and Retrieval. In: Proc. of the IEEE Shape Modeling International, May 12-15, pp. 130–139 (2003)

    Google Scholar 

  16. Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., Rusinkiewicz, S.: A Reflective Symmetry Descriptor for 3D Models. Algorithmica 38, 201–225 (2003)

    Article  MathSciNet  Google Scholar 

  17. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Symmetry descriptors and 3D shape matching. In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 115–123 (2004)

    Google Scholar 

  18. Johnson, A.: Surface landmark selection and matching in natural terrain. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 413–420 (2000)

    Google Scholar 

  19. Shum, H.-Y., Hebert, M., Ikeuchi, K.: On 3D shape similarity. In: Proc. of the IEEE Computer Vision and Pattern Recognition, pp. 526–531 (1996)

    Google Scholar 

  20. Chua, S.J., Jarvis, R.: Point signatures: a new representation for 3D object recognition. International Journal of Computer Vision 25(1), 63–65 (1997)

    Article  Google Scholar 

  21. Koendering, J.: Solid shape. The MIT Press (1990)

    Google Scholar 

  22. Zaharia, T., Preteux, F.: 3D shape-based retrieval within the MPEG-7 framework. In: Proc. of the SPIE Conference, vol. 4304, pp. 133–145 (2001)

    Google Scholar 

  23. Chen, D.-Y., Ouhyoung, M., Tian, X.-P., Shen, Y.-T.: On visual similarity based 3D model retrieval. Computer Graphics Forum, 223–232 (2003)

    Google Scholar 

  24. Frejlichowski, D.: Analysis of Four Polar Shape Descriptors Properties in an Exemplary Application. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 376–383. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Frejlichowski, D.: Identification of Erythrocyte Types in Greyscale MGG Images for Computer-Assisted Diagnosis. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 636–643. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Rauber, T.W., Steiger-Garção, A.S.: Shape Description by UNL Fourier Features — An Application to Handwritten Character Recognition. In: Proc. of the IAPR International Conference on Pattern Recognition, Conference B: Pattern Recognition Methodology and Systems, vol. II, pp. 466–469 (1992)

    Google Scholar 

  27. Frejlichowski, D.: A Three-Dimensional Shape Description Algorithm Based on Polar-Fourier Transform for 3D Model Retrieval. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 457–466. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Frejlichowski, D.: A new algorithm for 3D shape recognition by means of the 2D Point Distance Histogram. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part II. LNCS, vol. 6855, pp. 229–236. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.A.: The Princeton Shape Benchmark. In: Proc. of the SMI 2004, Genova, Italy, pp. 145–156 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frejlichowski, D. (2013). Three-Dimensional Object Representation Based on 2D UNL-Fourier Shape Descriptor. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39094-4_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39093-7

  • Online ISBN: 978-3-642-39094-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics