Skip to main content

Application of Enhanced-2D-CWT in Topographic Images for Mapping Landslide Risk Areas

  • Conference paper
Image Analysis and Recognition (ICIAR 2013)

Abstract

There has been lately a number of catastrophic events of landslides and mudslides in the mountainous region of Rio de Janeiro, Brazil. Those were caused by intense rain in localities where there was unplanned occupation of slopes of hills and mountains. Thus, it became imperative creating an inventory of landslide risk areas in densely populated cities. This work presents a way of demarcating risk areas by using the bidimensional Continuous Wavelet Transform (2D-CWT) applied to high resolution topographic images of the mountainous region of Rio de Janeiro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Filho, A.R., Cortez, A.T.C.: A problemática socioambiental da ocupação urbana em áreas de risco de deslizamento da Suíça Brasileira. Revista Brasileira de Geografia Física 03, 33–40 (2010)

    Google Scholar 

  2. Florenzano, T. G. (Org.).: Métodos e Modelos de Previsão de Movimentos de Massa. Oficina de Textos, São Paulo (2008)

    Google Scholar 

  3. Parise, M.: Landslide Mapping Techniques and Their Use in the Assessment of the Landslide Hazard. Phys. Chem. Earth (C) 26(9), 697–703 (2001)

    Google Scholar 

  4. Marcos, et al.: LiDAR: Princípios e aplicações florestais. Pesquisa Florestal Brasileira, Colombo 30(63), 231–244 (2010)

    Article  Google Scholar 

  5. Chamoli, A.: Wavelet Analysis of Geophysical Time Series. e-Journal Earth Science India 2(IV), 258–275 (2009)

    Google Scholar 

  6. Booth, A.M., Roering, J.J., Perron, J.T.: Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109, 132–147 (2009)

    Article  Google Scholar 

  7. Lang, W.C., Forinash, K.: Time-frequency analysis with the continuous wavelet transform. Am. J. Phys. 66(9) (1998)

    Google Scholar 

  8. Kirby, L.F.: Which wavelet best reproduces the Fourier power spectrum? Computers & Geosciences 31, 846–864 (2005)

    Article  Google Scholar 

  9. TOPODATA/INPE – Brazilian Geomorphometrics Database, http://www.dsr.inpe.br/topodata/acesso.php (last accessed on January 10, 2013)

  10. Perron, J.T., Kirchner, J.W., Dietrich, W.E.: Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. Journal of Geophysical Research 113, F04003 (2008)

    Google Scholar 

  11. Burrough, P.A., McDonell, R.A.: Principles of Geographical Information Systems, p. 190. Oxford University Press, New York (1998)

    Google Scholar 

  12. Tanennbaum, B.: Image Processing ToolboxTM 4 User’s Guide. The MathWork Inc., MA (2012)

    Google Scholar 

  13. Addison, P.S.: The Illustrated Wavelet Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. Institute of Physics Publishing, Bristol (2002)

    Book  Google Scholar 

  14. Strang, G.: Wavelet transforms versus Fourier transforms. Bull. Amer. (1993)

    Google Scholar 

  15. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79(1), 61–78 (1998)

    Article  Google Scholar 

  16. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing, Principles, Algorithms and applications, 4th edn. Pearson (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valenzuela, V.V., Lins, R.D., de Oliveira, H.M. (2013). Application of Enhanced-2D-CWT in Topographic Images for Mapping Landslide Risk Areas. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39094-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39093-7

  • Online ISBN: 978-3-642-39094-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics