Skip to main content

Light Ray Concentration Reduces the Complexity of the Wavelength-Based Machine on PSPACE Languages

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7956))

Abstract

The wavelength-based machine, or simply w-machine, is an optical computational model, dealing with light rays and simple optical devices. w-machine benefits from the parallel nature of light and co-existence of different wavelengths in a light ray to perform computation. In this paper, we have introduced a novel operation for w-machine, called the concentration operation, which enables to concentrate light rays as a single light ray, and check if the obtained light ray is dark or not, using white-black imaging. In this paper, we have investigated the impact of the concentration operation to computational complexity of w-machine for Turing PSPACE languages, and we have shown that every Turing PSPACE language is computable by a uniform series of concentration enabled w-machine, in polynomial time and exponential size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu, F.T.S., Jutamulia, S., Yin, S. (eds.): Introduction to Information Optics, 1st edn. Academic Press (2001)

    Google Scholar 

  2. Haist, T., Osten, W.: An optical solution for the traveling salesman problem. Optics Express 15(16), 10473–10482 (2007)

    Article  Google Scholar 

  3. Oltean, M., Muntean, O.: Exact cover with light. New Generation Computing 26(4), 329–346 (2008)

    Article  MATH  Google Scholar 

  4. Oltean, M., Muntean, O.: Solving the subset-sum problem with a light-based device. Natural Computing 8(2), 321–331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Muntean, O., Oltean, M.: Deciding whether a linear diophantine equation has solutions by using a light-based device. Journal of Optoelectronics and Advanced Materials 11(11), 1728–1734 (2009)

    Google Scholar 

  6. Oltean, M.: Solving the hamiltonian path problem with a light-based computer. Natural Computing 6(1), 57–70 (2008)

    Article  MathSciNet  Google Scholar 

  7. Dolev, S., Fitoussi, H.: Masking traveling beams: Optical solutions for NP-complete problems, trading space for time. Theoretical Computer Science 411, 837–853 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Reif, J.H., Tygar, D., Yoshida, A.: The computability and complexity of ray tracing. Discrete and Computational Geometry 11, 265–287 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Oltean, M.: Light-based string matching. Natural Computing 8(1), 121–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goliaei, S., Jalili, S.: An optical wavelength-based computational machine. International Journal of Unconventional Computing (in press)

    Google Scholar 

  11. Goliaei, S., Jalili, S.: An optical wavelength-based solution to the 3-SAT problem. In: Dolev, S., Oltean, M. (eds.) OSC 2009. LNCS, vol. 5882, pp. 77–85. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Woods, D., Naughton, T.J.: Optical computing. Applied Mathematics and Computation 215(4), 1417–1430 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Woods, D.: Upper bounds on the computational power of an optical model of computation. In: Deng, X., Du, D. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 777–788. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Reif, J.H., Tyagi, A.: Energy complexity of optical computations. In: Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing, pp. 14–21 (1990)

    Google Scholar 

  15. Barakat, R., Reif, J.H.: Lower bounds on the computational efficiency of optical computing systems. Applied Optics 26(6), 1015–1018 (1987)

    Article  Google Scholar 

  16. Goliaei, S., Foroughmand-Araabi, M.-H.: Lower bounds on the complexity of the wavelength-based machine. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 94–105. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goliaei, S., Foroughmand-Araabi, MH. (2013). Light Ray Concentration Reduces the Complexity of the Wavelength-Based Machine on PSPACE Languages. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds) Unconventional Computation and Natural Computation. UCNC 2013. Lecture Notes in Computer Science, vol 7956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39074-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39074-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39073-9

  • Online ISBN: 978-3-642-39074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics