Skip to main content

On the Resolution Complexity of Graph Non-isomorphism

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2013 (SAT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7962))

Abstract

For a pair of given graphs we encode the isomorphism principle in the natural way as a CNF formula of polynomial size in the number of vertices, which is satisfiable if and only if the graphs are isomorphic. Using the CFI graphs from [12], we can transform any undirected graph G into a pair of non-isomorphic graphs. We prove that the resolution width of any refutation of the formula stating that these graphs are isomorphic has a lower bound related to the expansion properties of G. Using this fact, we provide an explicit family of non-isomorphic graph pairs for which any resolution refutation requires an exponential number of clauses in the size of the initial formula. These graphs pairs are colored with color multiplicity bounded by 4. In contrast we show that when the color classes are restricted to have size 3 or less, the non-isomorphism formulas have tree-like resolution refutations of polynomial size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: Recursive construction for 3-regular expanders. Combinatorica 14(4), 379–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and Tseitin tautologies. Computational Complexity 20(4), 649–678 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anton, C., Neal, C.: Notes on generating satisfiable SAT instances using random subgraph isomorphism. In: Farzindar, A., Kešelj, V. (eds.) Canadian AI 2010. LNCS, vol. 6085, pp. 315–318. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Anton, C.: An improved satisfiable SAT generator based on random subgraph isomorphism. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 44–49. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Arvind, V., Kurur, P.P., Vijayaraghavan, T.C.: Bounded color multiplicity graph isomorphism is in the #L Hierarchy. In: Proceedings of the 20th Conference on Computational Complexity, pp. 13–27 (2005)

    Google Scholar 

  6. Babai, L.: Monte Carlo algorithms for Graph Isomorphism testing. Tech. Rep. 79-10, Dép. Math. et Stat., Univ. de Montréal (1979)

    Google Scholar 

  7. Beame, P., Culberson, J.C., Mitchell, D.G., Moore, C.: The resolution complexity of random graph k-colorability. Discrete Applied Mathematics 153(1-3), 25–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beame, P., Impagliazzo, R., Sabharwal, A.: The resolution complexity of independent sets and vertex covers in random graphs. Computational Complexity 16(3), 245–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: 37th Annual IEEE Symposium on Foundations of Computer Science, pp. 274–282 (1996)

    Google Scholar 

  10. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near-optimal separation of treelike and general resolution. Combinatorica 24(4), 585–603 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow – resolution made simple. Journal of the ACM 48(2), 149–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identifications. Combinatorica 12(4), 389–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. Journal of the ACM 35, 759–768 (1988)

    Article  MATH  Google Scholar 

  14. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5, 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Furst, M., Hopcroft, J., Luks, E.: Polynomial time algorithms for permutation groups. In: Proc. 21st IEEE Symp. on Foundations of Computer Science, pp. 36–41 (1980)

    Google Scholar 

  16. Goerdt, A.: The cutting plane proof system with bounded degree of falsity. In: Kleine Büning, H., Jäger, G., Börger, E., Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp. 119–133. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  17. Haken, A.: The intractability of resolution. Theoretical Computer Science 39(2-3), 297–308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hirsch, E.A., Kojevnikov, A., Kulikov, A.S., Nikolenko, S.I.: Complexity of semialgebraic proofs with restricted degree of falsity. Journal on Satisfiability, Boolean Modeling and Computation 6, 53–69 (2008)

    MathSciNet  Google Scholar 

  19. Immerman, N., Lander, E.: Describing graphs: a first-order approach to graph canonization. In: Selman, A.L. (ed.) Complexity Theory Retrospective, pp. 59–81. Springer (1990)

    Google Scholar 

  20. Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism. J. Comput. Syst. Sci. 66(3), 549–566 (2003)

    Article  MATH  Google Scholar 

  21. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism problem: Its structural complexity. Birkhauser (1993)

    Google Scholar 

  22. Robinson, J.A.: A machine oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)

    Article  MATH  Google Scholar 

  23. Schöning, U., Torán, J.: Das Erfüllbarkeitsproblem SAT - Algorithmen und Analysen, Lehmann (2012)

    Google Scholar 

  24. Torán, J.: On the hardness of Graph Isomorphism. SIAM Journal on Computing 33(5), 1093–1108 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125. Consultants Bureau (1968)

    Google Scholar 

  26. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34, 209–219 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torán, J. (2013). On the Resolution Complexity of Graph Non-isomorphism. In: Järvisalo, M., Van Gelder, A. (eds) Theory and Applications of Satisfiability Testing – SAT 2013. SAT 2013. Lecture Notes in Computer Science, vol 7962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39071-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39071-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39070-8

  • Online ISBN: 978-3-642-39071-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics