Skip to main content

Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2013 (SAT 2013)

Abstract

Beside the important progresses observed in SAT solving, a number of applications explicitly rely on incremental SAT solving only. In this paper, we focus on refining the incremental SAT Solver Glucose, from the SAT engine perspective, and address a number of unseen problems this new use of SAT solvers opened. By playing on clause database cleaning, assumptions managements and other classical parameters, we show that our approach immediately and significantly improves an intensive assumption-based incremental SAT solving task: Minimal Unsatisfiable Set. We believe this work could bring immediate benefits in a number of other applications relying on incremental SAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. STOC 1971, pp. 151–158 ACM (1971)

    Google Scholar 

  2. Moskewicz, M., Conor, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proc. DAC 2001 (2001)

    Google Scholar 

  3. Silva, J.P.M., Sakallah, K.: Grasp – a new search algorithm for satisfiability. In: Proc. CAD 1996, pp. 220–227 (1996)

    Google Scholar 

  4. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using sat procedures instead of bdds. In: Proc. DAC 1999, pp. 317–320 (1999)

    Google Scholar 

  6. Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and vliw microprocessors. Journal of Symbolic Computation 35(2), 73–106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer Science 89(4), 543–560 (2003)

    Article  Google Scholar 

  8. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proc. FMCAD 2010, pp. 221–229 (2010)

    Google Scholar 

  9. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Bradley, A.R.: IC3 and beyond: Incremental, inductive verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, p. 4. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model rotation. In: Proc. FMCAD 2011, pp. 37–40 (2011)

    Google Scholar 

  12. Grégoire, É., Mazure, B., Piette, C.: Extracting muses. In: Proc. ECAI 2006. Frontiers in Artificial Intel. and Applications, vol. 141, pp. 387–391. IOS Press (2006)

    Google Scholar 

  13. Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal unsatisfiable cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proc. IJCAI 2009, pp. 399–404 (2009)

    Google Scholar 

  15. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM (1962)

    Google Scholar 

  16. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a boolean satisfiability solver. In: Proc. CAD 2001, pp. 279–285 (2001)

    Google Scholar 

  17. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Goldberg, E.I., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proc. DATE 2002, pp. 142–149 (2002)

    Google Scholar 

  19. Audemard, G., Lagniez, J.-M., Mazure, B., Saïs, L.: On freezing and reactivating learnt clauses. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 188–200. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Marques-Silva, J., Lynce, I., Malik, S.: 4. In: Conflict-Driven Clause Learning SAT Solvers. Frontiers in Artificial Intelligence and Applications, vol. 185, p. 980. IOS Press (2009)

    Google Scholar 

  23. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Oh, Y., Mneimneh, M., Andraus, Z., Sakallah, K., Markov, I.: AMUSE: a minimally-unsatisfiable subformula extractor. In: Design Automation Conference, pp. 518–523 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Audemard, G., Lagniez, JM., Simon, L. (2013). Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction. In: Järvisalo, M., Van Gelder, A. (eds) Theory and Applications of Satisfiability Testing – SAT 2013. SAT 2013. Lecture Notes in Computer Science, vol 7962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39071-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39071-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39070-8

  • Online ISBN: 978-3-642-39071-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics