Robust Adaptive Neural Network Control for Wheeled Inverted Pendulum with Input Saturation

  • Enping Wei
  • Tieshan Li
  • Yancai Hu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7952)


In this paper, a novel control design is proposed for wheeled inverted pendulum with input saturation. Based on Lyapunov synthesis method, backstepping design procedure and the Neural network (NN) approximation to the uncertainty of the system, the adaptive NN tracking controller is constructed by considering actuator saturation constraints. The stability analysis subject to the effect of input saturation constrains are conducted with the help of an auxiliary design system. The proposed controller guarantees uniformly ultimately bounded of all the signals in the closed-loop system, while the tracking error can be made arbitrarily small. Simulation studies are given to illustrate the effectiveness and the performance of the proposed scheme.


wheeled inverted pendulum backstepping design neural network (NN) input saturation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El-Hawwary, M.I., Elshafei, A.L., Emara, H.M., Fattah, H.A.A.: Adaptive fuzzy control of the inverted pendulum problem. IEEE Control Syst. Technol. 14(6), 1135–1144 (2006)CrossRefGoogle Scholar
  2. 2.
    Tao, C.W., Taur, J.S., Hsieh, T.W., Tsai, C.L.: Design of a fuzzy controller with fuzzy swing-up and parallel distributed pole assignment schemes for an inverted pendulum and cart system. IEEE Control Syst. Technol. 16(6), 1277–1288 (2008)CrossRefGoogle Scholar
  3. 3.
    Takimoto, T., Yamamoto, S., Oku, H.: Washout control for manual operations. IEEE Control Syst. Technol. 16(6), 1169–1176 (2008)CrossRefGoogle Scholar
  4. 4.
    Grasser, F., Arrigo, A., Colombi, S., Rufer, A.C.: JOE: a mobile, inverted pendulum. IEEE Trans. Ind. Electron 39(1), 107–114 (2002)CrossRefGoogle Scholar
  5. 5.
    Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robotics 21(3), 505–513 (2005)CrossRefGoogle Scholar
  6. 6.
    Jung, S., Kim, S.S.: Control experiment of a wheel-driven mobile inverted pendulum using neural network. IEEE Trans. Control Syst. Technol. 16(2), 297–303 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ren, T.J., Chen, T.C., Chen, C.J.: Motion control for a two-wheeled vehicle using a self-tuning PID controller. Control Eng. Practice 16(3), 365–375 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Agarwal, M.: A systematic classification of neural-networkbased control. IEEE Trans. Control Syst. Mag. 17(2), 75–93 (1997)CrossRefGoogle Scholar
  9. 9.
    Khan, M., Rahman, M.A.: Development and implementation of a novel fault diagnostic and protection technique for IPM motor drives. IEEE Trans. Ind. Electron 56(1), 85–92 (2009)CrossRefGoogle Scholar
  10. 10.
    Mazumdar, J., Harley, R.G.: Recurrent neural networks trained with backpropagation through time algorithm to estimate nonlinear load harmonic currents. IEEE Trans. Ind. Electron 55(9), 3484–3491 (2008)CrossRefGoogle Scholar
  11. 11.
    Jemei, S., Hissel, D., Pera, M.C., Kauffmann, J.M.: A new modeling approach of embedded fuel-cell power generators based on artificial neural network. IEEE Trans. Ind. Electron 55(1), 437–447 (2008)CrossRefGoogle Scholar
  12. 12.
    Hou, Z.G., Zou, A.: Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach. IEEE Transactions on Control Systems Technology 17(4), 803–815 (2009)CrossRefGoogle Scholar
  13. 13.
    Albus, J.S.: A new approach to manipulator control the cerebellar model articulation controller (CMAC). Trans. ASME J. Dyn. Syst. Meas Control 97(3), 220–227 (1975)zbMATHCrossRefGoogle Scholar
  14. 14.
    Cheng, L., Hou, Z.G., Tan, M.: Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica 45(10), 2312–2318 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Wei, E.P., Li, T.S., Li, J.F., Hu, Y.C.: Neural Network-Based Adaptive Dynamic Surface Control for Inverted Pendulum System. In: The IEEE First International Conference on Cognitive Systems and Information Processing, CSIP 2012, pp. 56–63 (2012)Google Scholar
  16. 16.
    Chen, M., Ge, S.S., Choo, Y.: Neural network tracking control of ocean surface vessels with input saturation. In: Proc. of the 2009 IEEE International Conference on Automation and Logistics, ICAL 2009, pp. 85–89 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Enping Wei
    • 1
  • Tieshan Li
    • 1
  • Yancai Hu
    • 1
  1. 1.Navigational CollegeDalian Maritime UniversityDalianChina

Personalised recommendations