Bifurcation Control of a Fractional Order Hindmarsh-Rose Neuronal Model

  • Min Xiao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7952)


This paper proposes to use a state feedback method to control the Hopf bifurcation for a fractional order Hindmarsh-Rose neuronal model. The order of the fractional order Hindmarsh-Rose neuronal model is chosen as the bifurcation parameter. The analysis shows that in the absences of the state feedback controller, the fractional order model loses stability via the Hopf bifurcation early, and can maintain the stability only in a certain domain of the gain parameter. When applying the state feedback controller to the model, the onset of the undesirable Hopf bifurcation is postponed. Thus, the stability domain is extended, and the model possesses the stability in a larger parameter range. Numerical simulations are given to justify the validity of the state feedback controller in bifurcation control.


Fractional order Hindmarsh-Rose neuronal model Hopf bifurcation State feedback Bifurcation control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  2. 2.
    Bagley, R.L., Calico, R.A.: Fractional Order State Equations for the Control of Viscoelastically Damped Structures. J. Guid. Control Dyn. 14, 304–311 (1991)CrossRefGoogle Scholar
  3. 3.
    Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear Approximation of Transfer Function with a Pole of Fractional Order. IEEE Trans Autom. Control AC-29, 441–444 (1984)CrossRefGoogle Scholar
  4. 4.
    Ichise, M., Nagayanagi, Y., Kojima, T.: An Analog Simulation of Noninteger Order Transfer Functions for Analysis of Electrode Process. J. Electroanal. Chem. 33, 253–265 (1971)CrossRefGoogle Scholar
  5. 5.
    Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)Google Scholar
  6. 6.
    Laskin, N.: Fractional Market Dynamics. Phys. A 287, 482–492 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Levy Processes and Fractional Kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)CrossRefGoogle Scholar
  8. 8.
    Xiao, M.: Stability Analysis and Hopf-Type Bifurcation of A Fractional Order Hindmarsh-Rose Neuronal Model. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds.) ISNN 2012, Part I. LNCS, vol. 7367, pp. 217–224. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Abed, E.H., Fu, J.H.: Local Feedback Stabilization and Bifurcation Control: I. Hopf Bifurcation. Syst. Control Lett. 7, 11–17 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chen, G.R., Moiola, J.L., Wang, H.O.: Bifurcation Control: Theories, Methods and Applications. Int. J. Bifurcation and Chaos 10, 511–548 (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Wang, H., Abed, E.H.: Bifurcation Control of A Chaotic System. Automatica 31, 1213–1226 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Tesi, A., Abed, E.H., Genesio, R., Wang, H.O.: Harmonic Balance Analysis of Period-Doubling Bifurcations with Implications for Control of Nonlinear Dynamics. Automatica 32, 1255–1271 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Yu, P., Chen, G.R.: Hopf Bifurcation Control Using Nonlinear Feedback with Polynomial Functions. Int. J. Bifurcation and Chaos 14, 1683–1704 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Min Xiao
    • 1
    • 2
  1. 1.School of Mathematics and Information TechnologyNanjing Xiaozhuang UniversityNanjingChina
  2. 2.Department of MathematicsSoutheast UniversityNanjingChina

Personalised recommendations