Advertisement

Gestyboard 2.0: A Gesture-Based Text Entry Concept for High Performance Ten-Finger Touch-Typing and Blind Typing on Touchscreens

  • Tayfur Coskun
  • Christian Wiesner
  • Eva Artinger
  • Amal Benzina
  • Patrick Maier
  • Manuel Huber
  • Claudia Grill
  • Philip Schmitt
  • Gudrun Klinker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7946)

Abstract

This paper presents the second version of the Gestyboard, which is an innovative approach of text entry on multi-touch devices like tabletops or tablets. To overcome the lack of tactile feedback, we use unique gesture-to-key mappings for each finger according to the ten-finger touch-typing method. As a key feature, the Gestyboard only accepts keystrokes when they are performed with the finger corresponding to the ten-finger touch-typing method. This way, missing a keystroke is not possible, and therefore blind typing is naturally supported by the concept. The first version of the Gestyboard was optimized according to the qualitative and quantitative results of our first formal evaluation. This paper presents two new evaluations which give new insights on the comparative performance and conceptual improvements of the Gestyboard. In the second evaluation, our participants reached a speed of 108 cpm (characters per minute [21.6wpm]) and an error rate of 4% which is close to the performance of standard users on classic touchscreen keyboards. The third evaluation additionally revealed that our participants increased their typing speed with the Gestyboard by 44% and decreased their error rate by 48% in just 3 trial sessions. This steep learning curve is mostly due to the familiarity to the QWERTY layout.

Keywords

Gestyboard Iterative UI Development Text input Gestures ten-Finger-System UI Evaluation User-Centered Design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luk, J., Pasquero, J., Little, S., MacLean, K., Levesque, V., Hayward, V.: A role for haptics in mobile interaction: initial design using a handheld tactile display prototype. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 171–180. ACM (2006)Google Scholar
  2. 2.
    Goldberg, D., Richardson, C.: Touch-typing with a stylus. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on Human Factors in Computing Systems, pp. 80–87. ACM (1993)Google Scholar
  3. 3.
    Swype: Swype (April 02, 2012), http://www.swypeinc.com
  4. 4.
    Bader, P.: Entwicklung eines virtuellen Eingabegeräts für Multitouch Screens. Bachelor’s thesis, Hochschule der Medien, Stuttgart, Germany, GE (August 2008)Google Scholar
  5. 5.
    Sax, C., Lau, H., Lawrence, E.: Liquidkeyboard: An ergonomic, adaptive qwerty keyboard for touchscreens and surfaces. In: The Fifth International Conference on Digital Society, ICDS 2011, pp. 117–122 (2011)Google Scholar
  6. 6.
    Arif, A.S., Stuerzlinger, W.: Analysis of text entry performance metrics. In: 2009 IEEE Toronto International Conference on Science and Technology for Humanity (TIC-STH), pp. 100–105. IEEE (2009)Google Scholar
  7. 7.
    MacKenzie, I.S., Soukoreff, R.W.: Phrase sets for evaluating text entry techniques. In: CHI 2003 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2003, pp. 754–755. ACM, New York (2003)Google Scholar
  8. 8.
    Venolia, D., Neiberg, F.: T-cube: a fast, self-disclosing pen-based alphabet. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Celebrating Interdependence, pp. 265–270. ACM (1994)Google Scholar
  9. 9.
    Perlin, K.: Quikwriting: continuous stylus-based text entry. In: Proceedings of the 11th Annual ACM Symposium on User Interface Software and Technology, pp. 215–216. ACM (1998)Google Scholar
  10. 10.
    Ward, D., Blackwell, A., MacKay, D.: Dashera data entry interface using continuous gestures and language models. In: Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology, pp. 129–137. ACM (2000)Google Scholar
  11. 11.
    Wobbrock, J.O., Myers, B.A., Kembel, J.A.: Edgewrite: a stylus-based text entry method designed for high accuracy and stability of motion. In: Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, pp. 61–70. ACM (2003)Google Scholar
  12. 12.
    Castellucci, S.J., MacKenzie, I.S.: Graffiti vs. unistrokes: an empirical comparison. In: Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 305–308. ACM (2008)Google Scholar
  13. 13.
    Mosby, T.J., Wiswell, C.N.: Virtual keyboard based activation and dismissal. US-Patent 2009/0237361 (September 2009)Google Scholar
  14. 14.
    Fitaly: Fitaly, http://www.fitaly.com/fitaly/fitaly.htm (April 02, 2012)
  15. 15.
    Coskun, T., Artinger, E., Pirritano, L., Korhammer, D., Benzina, A., Grill, C., Dippon, A., Klinker, G.: Gestyboard: A 10-finger-system and gesture based text input system for multi-touchscreens w ith no need for tactile. techreport (2011)Google Scholar
  16. 16.
    Brooke, J.: SUS: a ‘quick and dirty’ usability scale. Usability evaluation in industry (1996)Google Scholar
  17. 17.
    Lopez, M., Castelluci, S., MacKenzie, I.: Text entry with the apple iphone and the nintendo wii (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tayfur Coskun
    • 1
  • Christian Wiesner
    • 1
  • Eva Artinger
    • 1
  • Amal Benzina
    • 1
  • Patrick Maier
    • 1
  • Manuel Huber
    • 1
  • Claudia Grill
    • 1
  • Philip Schmitt
    • 1
  • Gudrun Klinker
    • 1
  1. 1.Technische Universität MünchenGarching bei MünchenGermany

Personalised recommendations