Advertisement

Towards the Personalization of CAPTCHA Mechanisms Based on Individual Differences in Cognitive Processing

  • Marios Belk
  • Panagiotis Germanakos
  • Christos Fidas
  • Andreas Holzinger
  • George Samaras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7946)

Abstract

This paper studies the effect of individual differences on user performance related to text-recognition CAPTCHA challenges. In particular, a text-recognition CAPTCHA mechanism was deployed in a three-month user study to investigate the effect of individuals’ different cognitive processing abilities, targeting on speed of processing, controlled attention and working memory capacity toward efficiency and effectiveness with regard to different levels of complexity in text-recognition CAPTCHA tasks. A total of 107 users interacted with CAPTCHA challenges between September and November 2012 indicating that the usability of CAPTCHA mechanisms may be supported by personalization techniques based on individual differences in cognitive processing.

Keywords

Individual Differences Cognitive Processing Abilities CAPTCHA Efficiency Effectiveness User Study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Ahn, L., Blum, M., Langford, J.: Telling Humans and Computers Apart Automatically. Communications of the ACM 47, 56–60 (2004)CrossRefGoogle Scholar
  2. 2.
    von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard AI problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How Good are Humans at Solving CAPTCHAs? A Large Scale Evaluation. In: IEEE Symposium on Security and Privacy, pp. 399–413. IEEE Computer Society, Washington, DC (2010)Google Scholar
  4. 4.
    von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-Based Character Recognition via Web Security Measures. Science 321(5895), 1465–1468 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Pogue, D.: Time to Kill OffCaptchas - How the Bot-proofing of the Internet is Bringing Humans Down. Scientific American (2012)Google Scholar
  6. 6.
    Yan, J., El Ahmad, A.S.: A Low-cost Attack on a Microsoft CAPTCHA. In: 15th ACM International Conference on Computer and Communications Security, pp. 543–554. ACM Press, New York (2008)Google Scholar
  7. 7.
    Baecher, P., Büscher, N., Fischlin, M., Milde, B.: Breaking reCAPTCHA: A Holistic Approach via Shape Recognition. In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann, A., Rieder, C. (eds.) SEC 2011. IFIP AICT, vol. 354, pp. 56–67. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Yan, J., El Ahmad, A.S.: Usability of CAPTCHAs or Usability Issues in CAPTCHA Design. In: ACM International Symposium on Usable Security and Privacy, pp. 44–52. ACM Press, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Fidas, C., Voyiatzis, A., Avouris, N.: On the Necessity of User-friendly CAPTCHA. In: ACM International Conference on Human Factors in Computing Systems, pp. 2623–2626. ACM Press, New York (2011)Google Scholar
  10. 10.
    Brusilovsky, P., Kobsa, A., Nejdl, W.: The Adaptive Web: Methods and Strategies of Web Personalization. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Germanakos, P., Tsianos, N., Lekkas, Z., Mourlas, C., Belk, M., Samaras, G.: Towards an Adaptive and Personalized Web Interaction using Human Factors. In: Angelides, M., Mylonas, P., Wallace, M. (eds.) Advances in Semantic Media Adaptation and Personalization, pp. 247–282. Taylor & Francis (2009)Google Scholar
  12. 12.
    Triantafillou, E., Pomportsis, A., Demetriadis, S., Georgiadou, E.: The Value of Adaptivity based on Cognitive Style: an Empirical Study. Educational Technology 35, 95–106 (2004)CrossRefGoogle Scholar
  13. 13.
    Graf, S.: Kinshuk: Advanced Adaptivity in Learning Management Systems by Considering Learning Styles. In: International Workshop on Social and Personal Computing for Web-Supported Learning Communities, pp. 235–238 (2009)Google Scholar
  14. 14.
    Riding, R.: Cognitive Style Analysis - Research Administration. Learning and Training Technology (2001)Google Scholar
  15. 15.
    Witkin, H.A., Moore, C.A., Goodenough, D.R., Cox, P.W.: Field-dependent and field-independent Cognitive Styles and their Educational Implications. Review of Educational Research 47, 1–64 (1977)CrossRefGoogle Scholar
  16. 16.
    Demetriou, A., Spanoudis, G., Shayer, S., Mouyi, A., Kazi, S., Platsidou, M.: Cycles in Speed-Working Memory-G Relations: Towards a Developmental-Differential Theory of the Mind. Intelligence 41, 34–50 (2013)CrossRefGoogle Scholar
  17. 17.
    Hunt, E.B.: Human Intelligence. Cambridge University Press, New York (2011)Google Scholar
  18. 18.
    Demetriou, A., Spanoudis, G., Mouyi, A.: Educating the Developing Mind: Towards an Overarching Paradigm. Educational Psychology Review 23(4), 601–663 (2011)CrossRefGoogle Scholar
  19. 19.
    MacLeod, C.M.: Half a Century of Research on the Stroop Effect: An Integrative review. Psychological Bulletin 109, 163–203 (1991)CrossRefGoogle Scholar
  20. 20.
    Posner, M.I., Raicle, M.E.: Images of Mind. Scientific American Library, New York (1997)Google Scholar
  21. 21.
    Stroop, J.R.: Studies of Interference in Serial Verbal Reactions. Experimental Psychology 18, 643–662 (1935)CrossRefGoogle Scholar
  22. 22.
    Baddeley, A.: Working Memory: Theories, Models, and Controversies. Annual Review of Psychology 63, 1–29 (2012)CrossRefGoogle Scholar
  23. 23.
    Baddeley, A.: Working Memory. Science 255(5044), 556–559 (1992)CrossRefGoogle Scholar
  24. 24.
    Conway, A.R.A., Cowan, N., Bunting, M.F., Therriault, D.J., Minkoff, S.R.: A Latent Variable Analysis of Working Memory Capacity, Short-term Memory Capacity, Processing Speed, and General Fluid Intelligence. Intelligence 30, 163–183 (2002)CrossRefGoogle Scholar
  25. 25.
    Shipstead, Z., Broadway, J.: Individual Differences in Working Memory Capacity and the Stroop Effect: Do High Spans Block the Words? Learning and Individual Differences (in press)Google Scholar
  26. 26.
    Demetriou, A., Christou, C., Spanoudis, G., Platsidou, M.: The Development of Mental Processing: Efficiency, Working Memory and Thinking. Monographs of the Society for Research in Child Development 67(1) (2002)Google Scholar
  27. 27.
    Unsworth, N., Spillers, G.: Working Memory Capacity: Attention Control, Secondary Memory, or Both? A Direct Test of the Dual-component Model. Memory and Language 62, 392–406 (2010)CrossRefGoogle Scholar
  28. 28.
    Cowan, N.: The Magical Mystery Four: How is Working Memory Capacity Limited, and Why? Current Directions in Psychological Science 19(1), 51–57 (2010)CrossRefGoogle Scholar
  29. 29.
    Klingberg, T.: The Overflowing Brain: Information Overload and the Limits of Working Memory. Oxford University Press, New York (2009)Google Scholar
  30. 30.
    Bursztein, E., Martin, M., Mitchell, J.: Text-based CAPTCHA Strengths and Weaknesses. In: 18th ACM International Conference on Computer and Communications Security, pp. 125–138. ACM Press, New York (2011)Google Scholar
  31. 31.
    Cook, T., Campbell, D.: Quasi-experimentation: Design and Analysis Issues for Field Settings. Houghton Mifflin Company, Boston (1979)Google Scholar
  32. 32.
    Brewer, M.: Research Design and Issues of Validity. In: Reis, H., Judd, C. (eds.) Handbook of Research Methods in Social and Personality Psychology, pp. 3–16. Cambridge University Press, Cambridge (2000)Google Scholar
  33. 33.
    Belk, M., Fidas, C., Germanakos, P., Samaras, G.: Do Cognitive Styles of Users Affect Preference and Performance Related to CAPTCHA Challenges? In: ACM International Conference on Human Factors in Computing Systems, pp. 1487–1492. ACM Press, New York (2012)Google Scholar
  34. 34.
    Holzinger, A., Lugmayr, A., Bogner, M.S.: Security and Usability Workshop. In: IEEE International Conference on Availability, Reliability and Security. IEEE Computing Society, Washington, DC (2009)Google Scholar
  35. 35.
    Belk, M., Germanakos, P., Fidas, C., Spanoudis, G., Samaras, G.: Studying the Effect of Human Cognition on Text- and Image-recognition CAPTCHA Mechanisms. In: International Conference on Human-Computer Interaction - HCI International. LNCS, Springer, Heidelberg (in press, 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marios Belk
    • 1
  • Panagiotis Germanakos
    • 1
    • 2
  • Christos Fidas
    • 1
  • Andreas Holzinger
    • 3
  • George Samaras
    • 1
  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus
  2. 2.SAP AGWalldorfGermany
  3. 3.Institute for Medical Informatics, Statistics & Documentation, Research Unit HCI4MEDMedical University GrazGrazAustria

Personalised recommendations