Advertisement

Practical Neurophysiological Analysis of Readability as a Usability Dimension

  • Inês Isabel Pimentel Oliveira
  • Nuno Manuel Guimarães
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7946)

Abstract

This paper discusses opportunities and feasibility of integrating neurophysiologic analysis methods, based on electroencephalography (EEG), in the current landscape of usability evaluation methods. The rapid evolution and growing availability of low-cost, easier to use devices and the accumulated knowledge in feature extraction and processing algorithms allow us to foresee the practicality of this integration.

The work presented in this paper is focused on reading and readability, identified as a key element of usability heuristics, and observable in the neurophysiologic signals’ space. The experiments are primarily designed to address the discrimination of the reading activity (silent, attentive and continuous) and the verification of decreasing readability, associated with the user’s mental workload analysis. The results obtained in the series of experiments demonstrate the validity of the approach for each individual user, and raise the problem of inter-subject variability and the need for designing appropriate calibration procedures for different users.

Keywords

Usability analysis neurophysiologic signals EEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dix, A., Finlay, J.E., Abowd, G.D., Russell, B.: Human Computer Interaction, 3rd edn. Pearson Education Limited (2004) ISBN-13: 978-0-13-046109-4Google Scholar
  2. 2.
    Schmorrow, D., Kruse, A., Reeves, L., Bolton, A.: Augmenting Cognition in HCI: 21st Century Adaptive System Science and Technology. In: Sears, A., Jacko, J.A. (eds.) The Human–Computer Interaction Handbook, 2nd edn., pp. 1172–1188. Lawrence Erlbaum Associates (2008) ISBN-13: 978-0-8058-5870-9Google Scholar
  3. 3.
    Zander, T.O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., Picht, B., Nijboer, F.: A dry EEG-system for scientific research and brain-computer inter-faces. Frontiers in Neuroscience 5, art. 53 (2011)Google Scholar
  4. 4.
    Beer, R., Lehman, W., Noldus, L., Patèrno, F., Schmidt, E., Hove, W., Theuws, J.: The Usability Lab of the Future, Human Computer Interaction, INTERACT 2003 (2003)Google Scholar
  5. 5.
    Ganglbauer, E., Schrammel, J., Deutsch, S.: Applying Psychophysiological Me-thods for Measuring User Experience: Possibilities, Challenges and Feasibility. In: Proc. in User Experience Evaluation Methods in Product Development (UXEM 2009) in Conjunction with Interact 2009 (2009)Google Scholar
  6. 6.
    Hu, J., Nakanishi, M., Matsumoto, K., Tagaito, H., Inoue, K., Shima, K., Torii, K.: A Method of Usability Testing by Measuring Brain Waves. In: Proc. of the International Symposium on Future Software Technology (ISFST 2000) (2000)Google Scholar
  7. 7.
    Foglia, P., Prete, C., Zanda, M.: Relating GSR Signals to traditional Usability Me-trics: Case Study with an anthropomorphic Web Assistant. In: IEEE Intnl. Instrumentation and Measurement Technology Conf., Victoria, Vancouver Island, Canada, May 12-15 (2008)Google Scholar
  8. 8.
    Stickel, C., Ebner, M., Steinbach-Nordmann, S., Searle, G., Holzinger, A.: Emotion Detection: Application of the Valence Arousal Space for Rapid Biological Usability Testing to enhance Universal Access. In: Stephanidis, C. (ed.) Universal Access in HCI, Part I, HCII 2009. LNCS, vol. 5614, pp. 615–624. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Stickel, C., Scerbakov, A., Kaufmann, T., Ebner, M.: Usability metrics of time and stress-biological enhanced performance test of a university wide learning management system. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 173–184. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Kimura, M., Uwano, H., Ohira, M., Matsumoto, K.: Toward Constructing an Electroencephalogram Measurement Method for Usability Evaluation. In: Jacko, J.A. (ed.) HCI International 2009, Part I. LNCS, vol. 5610, pp. 95–104. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Masaki, H., Ohira, M., Uwano, H., Matsumoto, K.: A Quantitative Evaluation on the Software Use Experience with Electroencephalogram. In: Marcus, A. (ed.) Design, User Experience, and Usability, Pt II, HCII 2011. LNCS, vol. 6770, pp. 469–477. Springer, Heidelberg (2011)Google Scholar
  12. 12.
    Hirshfield, L.M., Chauncey, K., Gulotta, R., Girouard, A., Solovey, E.T., Jacob, R.J.K., Sassaroli, A., Fantini, S.: Combining Electroencephalograph and Functional Near Infrared Spectroscopy to Explore Users’ Mental Workload. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) FAC 2009. LNCS, vol. 5638, pp. 239–247. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Lee, H., Seo, S.: A Comparison and Analysis of Usability Methods for Web Evaluation: The Relationship Between Typical Usability Test and Bio-Signals Characteristics (EEG, ECG). In: Proc. of 2010 DRS (Design Research Society) Montreal Conference (2010) ISBN 978-2-9811985-2-5Google Scholar
  14. 14.
    Nacke, L.: Wiimote vs. Controller: Electroencephalographic Measurement of Affective Gameplay Interaction. In: Proc. of the Intnl. Conf. on the Future of Game Design and Technology Futureplay. ACM Press (2010)Google Scholar
  15. 15.
    Ward, R., Marsden, P.: Affective computing: problems, reactions and intentions. Journal of Interacting with Computers 16(4), 707–713 (2004)CrossRefGoogle Scholar
  16. 16.
    Winograd, T., Flores, F.: Understanding Computers and Cogniton: a New Foundation for Design. Addison Wesley (1986)Google Scholar
  17. 17.
    Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proc. ACM CHI 1990 Conference, Seattle, WA (April 1990)Google Scholar
  18. 18.
    Shneiderman, B.: Designing the User Interface, Strategies for Effective Human-Computer Interaction, 3rd edn. Addison Wesley (1997) ISBN 0-201-69497-2Google Scholar
  19. 19.
    Tognazzini, B.: First Principles of Interaction Design, AskTog – Interaction Design Solutions for the Real World. NN/g – Nielsen Norman Group (January 18, 2012), AskTog: http://www.asktog.com/basics/firstPrinciples.html
  20. 20.
    Oliveira, I., Grigore, O., Guimarães, N.: Reading detection based on electroen cephalogram processing. In: WSEAS 13th Intnl. Conf. on Computers, Rhodes, Greece (2009)Google Scholar
  21. 21.
    Oliveira, I., Grigore, O., Guimarães, N., Duarte, L.: Relevance of EEG Input Signals in the Augmented Human Reader. In: ACM – Augmented Human, AH 2010, Megève, France (April 2010)Google Scholar
  22. 22.
    Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain–Computer Interface Technology: A Review of the First International Meeting. IEEE Transactions on Rehabilitation Engineering 8 (2000)Google Scholar
  23. 23.
    Millán, J.R.: Adaptative Brain Interfaces. Communications of the ACM 46(3), 74–80 (2003)CrossRefGoogle Scholar
  24. 24.
    Zander, T.O., Gartner, M., Kothe, C., Vilimek, R.: Combining Eye Gaze Input with a Brain-Computer Interface for Touchless Human-Computer Interaction. International Journal of Human Computer Interaction 27(1), 38–51 (2011)CrossRefGoogle Scholar
  25. 25.
    Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)Google Scholar
  26. 26.
    Xu, Q., Zhou, H., Wang, Y., Huang, J.: Fuzzy support vector machine for classification of EEG signals using wavelet-based features. Medical Engineering & Physics 31, 858–865 (2009)CrossRefGoogle Scholar
  27. 27.
    W3C: CSS Techniques for Web Content Accessibility Guidelines 1.0, Obtained in December 2011, from W3 (2010), http://www.w3.org/TR/WCAG10-CSS-TECHS
  28. 28.
    W3C: Fonts, Obtained in December 2011, from W3 (2011), http://www.w3.org/TR/CSS2/fonts.html
  29. 29.
    Fisch, B.: Fisch and Spehlmann’s EEG Primer: Basic Principles of Digital and Analog EEG. Elesevier (1999) ISBN 978-0-444-82148-5 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Inês Isabel Pimentel Oliveira
    • 1
  • Nuno Manuel Guimarães
    • 2
  1. 1.SITILabsLusófona UniversityPortugal
  2. 2.LaSIGE/ISCTE-IULUniversity Institute of LisbonPortugal

Personalised recommendations