Skip to main content

Minkowski Sum Based Lattice Construction for Multivariate Simultaneous Coppersmith’s Technique and Applications to RSA

  • Conference paper
Information Security and Privacy (ACISP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7959))

Included in the following conference series:

Abstract

We investigate a lattice construction method for the Coppersmith technique for finding small solutions of a modular equation. We consider its variant for simultaneous equations and propose a method to construct a lattice by combining lattices for solving single equations. As applications, we consider a new RSA cryptanalysis. Our algorithm can factor an RSA modulus from ℓ ≥ 2 pairs of RSA public exponents with the common modulus corresponding to secret exponents smaller than N (9ℓ − 5)/(12ℓ + 4), which improves on the previously best known result by Sarkar and Maitra. For partial key exposure situation, we also can factor the modulus if β − δ/2 + 1/4 < (3ℓ − 1)(3ℓ + 1), where β and δ are bit-lengths / logN of the secret exponent and its exposed LSBs, respectively. Due to the spacing limit, some arguments are omitted; see the full-version [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aono, Y.: Minkowski sum based lattice construction for multivariate simultaneous Coppersmith’s technique and applications to RSA. Cryptology ePrint Archive, 2012/675 (2012)

    Google Scholar 

  2. Aono, Y., Agrawal, M., Satoh, T., Watanabe, O.: On the Optimality of Lattices for the Coppersmith Technique. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 376–389. Springer, Heidelberg (2012); The full-version is available online at Cryptology ePrint Archive, 2012/134

    Chapter  Google Scholar 

  3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N 0.292. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Blömer, J., May, A.: A tool kit for finding small roots of bivariate polynomials over the integers. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 251–267. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. Springer, New York (2007)

    Google Scholar 

  8. Coron, J.-S., Naccache, D., Tibouchi, M.: Fault Attacks Against emv Signatures. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. GiNaC is Not a CAS, http://www.ginac.de/

  13. The GNU MP Bignum Library, http://gmplib.org/

  14. Healy, A.D.: Resultants, Resolvents and the Computation of Galois Groups, http://www.alexhealy.net/papers/math250a.pdf

  15. Herrmann, M.: Improved cryptanalysis of the multi-prime Φ-hiding assumption. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 92–99. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997)

    Google Scholar 

  17. Hinek, M.J., Lam, C.C.Y.: Common modulus attacks on small private exponent RSA and some fast variants (in practice). Journal of Mathematical Cryptology 4(1), 58–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Herrmann, M., May, A.: Attacking power generators using unravelled linearization: When do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 487–504. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Howgrave-Graham, N., Seifert, J.-P.: Extending Wiener’s attack in the presence of many decrypting exponents. In: Baumgart, R. (ed.) CQRE 1999. LNCS, vol. 1740, pp. 153–166. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Kunihiro, N., Kurosawa, K.: Deterministic polynomial time equivalence between factoring and key-recovery attack on Takagi’s RSA. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 412–425. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Kunihiro, N.: Solving generalized small inverse problems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 248–263. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo, P., Zhou, H.-J., Wang, D.-S., Dai, Y.-Q.: Cryptanalysis of RSA for a special case with d > e. Science in China Series F: Information Sciences 52(4), 609–616 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. May, A.: Cryptanalysis of unbalanced RSA with small CRT-exponent. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. May, A., Ritzenhofen, M.: Solving systems of modular equations in one variable: How many RSA-encrypted messages does Eve need to know? In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 37–46. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Maitra, S., Sarkar, S.: A New Class of Weak Encryption Exponents in RSA. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 337–349. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Shoup, V.: NTL: A Library for doing Number Theory, http://www.shoup.net/ntl/index.html

  29. Nguyen, P.Q., Vallée, B.: The LLL algorithm: Survey and applications. Springer, Berlin (2009)

    Google Scholar 

  30. Ritzenhofen, M.: On efficiently calculating small solutions of systems of polynomial equations: lattice-based methods and applications to cryptography, Ph.D. thesis, Ruhr University Bochum, http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/RitzenhofenMaike/diss.pdf

  31. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptsystems. Communications of the ACM 21(2), 120–128 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sarkar, S., Maitra, S.: Cryptanalysis of RSA with two decryption exponents. Information Processing Letter 110, 178–181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sarkar, S., Maitra, S.: Cryptanalysis of RSA with more than one decryption exponent. Information Processing Letter 110, 336–340 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory 36(3), 553–558 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aono, Y. (2013). Minkowski Sum Based Lattice Construction for Multivariate Simultaneous Coppersmith’s Technique and Applications to RSA. In: Boyd, C., Simpson, L. (eds) Information Security and Privacy. ACISP 2013. Lecture Notes in Computer Science, vol 7959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39059-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39059-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39058-6

  • Online ISBN: 978-3-642-39059-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics