Skip to main content

The Turing Universe in the Context of Enumeration Reducibility

  • Conference paper
Book cover The Nature of Computation. Logic, Algorithms, Applications (CiE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7921))

Included in the following conference series:

  • 1703 Accesses

Abstract

A fundamental goal of computability theory is to understand the way that objects relate to each other in terms of their information content. We wish to understand the relative information content between sets of natural numbers, how one subset of the natural numbers Y can be used to specify another one X. This specification can be computational, or arithmetic, or even by the application of a countable sequence of Borel operations. Each notion in the spectrum gives rise to a different model of relative computability. Which of these models best reflects the real world computation is under question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, S.: Embedding the diamond in the Σ2 enumeration degrees. J. Symbolic Logic 56, 195–212 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arslanov, M.M., Cooper, S.B., Kalimullin, I.S.: Splitting properties of total enumeration degrees. Algebra and Logic 42, 1–13 (2003)

    Article  MathSciNet  Google Scholar 

  3. Coles, R., Downey, R., Slaman, T.: Every set has a least jump enumeration. Bulletin London Math. Soc. 62, 641–649 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cooper, S.B.: Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense. J. Symbolic Logic 49, 503–513 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cooper, S.B., Soskova, M.I.: How enumeration reducibility yields extended Harrington non-splitting. J. Symbolic Logic 73, 634–655 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedberg, R.M., Rogers Jr., H.: Reducibility and completeness for sets of integers. Z. Math. Logik Grundlag. Math. 5, 117–125 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ganchev, H.A., Soskova, M.I.: Definability via \(\mathcal{K}\)-pairs (submitted)

    Google Scholar 

  8. Ganchev, H.A., Soskova, M.I.: Cupping and definability in the local structure of the enumeration degrees. J. Symbolic Logic 77(1), 133–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ganchev, H.A., Soskova, M.I.: Embedding distributive lattices in the \(\Sigma^0_2\) enumeration degrees. J. Logic Comput. 22, 779–792 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ganchev, H.A., Soskova, M.I.: Interpreting true arithmetic in the local structure of the enumeration degrees. To Appear in J. Symbolic Logic (2012)

    Google Scholar 

  11. Giorgi, M., Sorbi, A., Yang, Y.: Properly \(\Sigma^0_2\) enumeration degrees and the high/low hierarchy. J. Symbolic Logic 71, 1125–1144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.: Enumerations in computable structure theory. Ann. Pure Appl. Logic 136, 219–236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harrington, L.: Understanding Lachlan’s monster paper, Handwritten notes (1980)

    Google Scholar 

  14. Harrington, L., Shelah, S.: The undecidability of the recursively enumerable degrees. Bull. Symb. Logic 6(1), 79–80 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Jockusch, C.G.: Semirecursive sets and positive reducibility. Trans. Amer. Math. Soc. 131, 420–436 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalimullin, I.S.: Definability of the jump operator in the enumeration degrees. Journal of Mathematical Logic 3, 257–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lachlan, A.H.: A recursively enumerable degree which will not split over all lesser ones. Ann. Math. Logic 9, 307–365 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nies, A., Shore, R.A., Slaman, T.A.: Interpretability and definability in the recursively enumerable degrees. Proc. London Math. Soc. 77, 241–249 (1998)

    Article  MathSciNet  Google Scholar 

  19. Richter, L.J.: Degree structures: Local and global investigations. J. Symbolic Logic 46, 723–731 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rogers Jr., H.: Theory of recursive functions and effective computability. McGraw-Hill Book Company, New York (1967)

    MATH  Google Scholar 

  21. Selman, A.L.: Arithmetical reducibilities I. Z. Math. Logik Grundlag. Math. 17, 335–350 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shore, R.A.: Biinterpretability up to double jump in the degrees below 0 (to appear)

    Google Scholar 

  23. Shore, R.A., Slaman, T.A.: Defining the Turing jump. Math. Res. Lett. 6, 711–722 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Simpson, S.G.: First order theory of the degrees of recursive unsolvability. Annals of Mathematics 105, 121–139 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Slaman, T.A., Woodin, W.: Definability in the enumeration degrees. Arch. Math. Logic 36, ñ255–ñ267 (1997)

    Google Scholar 

  26. Slaman, T.A., Woodin, W.H.: Definability in degree structures (2005), http://math.berkeley.edu/slaman/talks/sw.pdf

  27. Soskov, I.: A note on ω jump inversion of degree spectra of structures, This proceedings.

    Google Scholar 

  28. Soskov, I.N.: A jump inversion theorem for the enumeration jump. Arch. Math. Logic 39, 417–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96, 45–68 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Soskova, M.I.: The automorphism group of the enumeration degrees, in preparation

    Google Scholar 

  31. Soskova, M.I.: A non-splitting theorem in the enumeration degrees. Ann. Pure Appl. Logic 160, 400–418 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soskova, M.I. (2013). The Turing Universe in the Context of Enumeration Reducibility. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds) The Nature of Computation. Logic, Algorithms, Applications. CiE 2013. Lecture Notes in Computer Science, vol 7921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39053-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39053-1_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39052-4

  • Online ISBN: 978-3-642-39053-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics