Skip to main content

Microscopic, Mesoscopic and Macroscopic Descriptions of Dispersal

  • Chapter
  • First Online:
  • 1689 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN))

Abstract

Dispersal and movement are important processes that affects the distribution and abundance of organisms. To a greater or lesser extent all organisms disperse probably as a response to temporal heterogeneity or deteriorating local conditions, and this process is superposed to the movements that organisms need to carry out to perform their basic functions. The ecologically mensurable magnitude in these cases is often the overall number of organisms located within a given length, area or volume, which varies in time and space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abedon, S.: Bacteriophages and Biofilms: Ecology, Phage Therapy, Plaques. Bacteriology Reseach Developments: Biotechnology in Agriculture, Industry and Medicine. Nova Science, New York (2011). http://books.google.es/books?id=cIqlcQAACAAJ

  2. Adler, J.: Chemotaxis in bacteria. Science 153(3737), 708–716 (1966)

    Article  ADS  Google Scholar 

  3. Bartumeus, F., Levin, S.A.: Fractal reorientation clocks: linking animal behavior to statistical patterns of search. Proc. Natl. Acad. Sci. U.S.A. 105(49), 19072–19077 (2008). doi:10.1073/pnas.0801926105

    Article  ADS  Google Scholar 

  4. Bartumeus, F., Catalan, J., Viswanathan, G., Raposo, E., da Luz, M.: The influence of turning angles on the success of non-oriented animal searches. J. Theor. Biol. 252(1), 43–55 (2008). http://dx.doi.org/10.1016/j.jtbi.2008.01.009

  5. Bénichou, O., Coppey, M., Moreau, M., Voituriez, R.: Intermittent search strategies: when losing time becomes efficient. Europhys. Lett. 75(2), 349–354 (2006). doi:10.1209/epl/i2006-10100-3. http://stacks.iop.org/0295-5075/75/349

  6. Berg, H.: E. Coli in Motion. Biological and Medical Physics Series. Springer, New York (2004). http://books.google.es/books?id=qyVoI1iUiBkC

  7. Campos, D., Méndez, V., Llopis, I.: Persistent random motion uncovering cell migration dynamics. J. Theor. Biol. 267(4), 526–534 (2010). doi:10.1016/j.jtbi.2010.09.022

    Article  Google Scholar 

  8. Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker-smale model. SIAM J. Math. Anal. 42(1), 218–236 (2010). doi:10.1137/090757290

    Article  MATH  MathSciNet  Google Scholar 

  9. Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. J. R. Soc. Interface 5(25), 813–834 (2008). doi:10.1098/rsif.2008.0014

    Article  Google Scholar 

  10. Dai, X., Shannon, G., Slotow, R., Page, B., Duffy, K.J.: Short-duration daytime movements of a cow herd of African elephants. J. Mammal. 88(1), 151–157 (2007). doi:10.1644/06-MAMM-A-035R1.1

    Article  Google Scholar 

  11. D’Orsogna, M., Chuang, Y., Bertozzi, A., Chayes, L.: Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96(10) (2006). doi:10.1103/PhysRevLett.96.104302

    Google Scholar 

  12. Duffy, K., Ford, R.: Turn angle and run time distributions characterize swimming behavior for Pseudomonas putida. J. Bacteriol. 179(4), 1428–1430 (1997)

    Google Scholar 

  13. Fedotov, S.: Subdiffusion, chemotaxis, and anomalous aggregation. Phys. Rev. E 83, 021,110 (2011). doi:10.1103/PhysRevE.83.021110. http://link.aps.org/doi/10.1103/PhysRevE.83.021110

    Google Scholar 

  14. Flierl, G., Grünbaum, D., Levin, S., Olson, D.: From individuals to aggregations: the interplay between behavior and physics. J. Theor. Biol. 196, 397–454 (1999)

    Article  Google Scholar 

  15. Fürth, R.: Die Brownsche Bewegung bei Berücksichtigung einer Persistenz der Bewegungsrichtung. Mit Anwendungen auf die Bewegung lebender Infusorien. Z. Physik 2, 244–256 (1920)

    Google Scholar 

  16. Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951)

    Article  MATH  Google Scholar 

  17. Golestanian, R.: Collective behavior of thermally active colloids. Phys. Rev. Lett. 108(3), 038303 (2012). doi:10.1103/PhysRevLett.108.038303

    Article  ADS  Google Scholar 

  18. Grima, R.: Strong-coupling dynamics of a multicellular chemotactic system. Phys. Rev. Lett. 95(12), 128103 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.128103. (4 pages)

    Google Scholar 

  19. Grünbaum, D.: Translating stochastic density-dependent individual behavior with sensory constraints to an Eulerian model of animal swarming. J. Math. Biol. 33(2), 139–161 (1994). http://dx.doi.org/10.1007/BF00160177

    Google Scholar 

  20. Gurney, W., Nisbet, R.: The regulation of inhomogeneous populations. J. Theor. Biol. 52(2), 441–457 (1975). doi:10.1016/0022-5193(75)90011-9. http://www.sciencedirect.com/science/article/pii/0022519375900119

    Google Scholar 

  21. Hadeler, K.P.: Reaction transport systems in biological modelling. In: Diekmann, O., Durrett, R., Hadeler, K.P., Maini, P., Smith, H.L. (eds.) Mathematics Inspired by Biology. Lecture Notes in Mathematics, vol. 1714, pp. 95–150. Springer, Berlin (1999). doi:10.1007/BFb0092376. http://dx.doi.org/10.1007/BFb0092376

  22. Hamann, H.: Space-Time Continuous Models of Swarm Robotic Systems. Springer, Berlin (2010)

    Book  Google Scholar 

  23. Hillen, T.: A Turing model with correlated random walk. J. Math. Biol. 35(1), 49–72 (1996). http://dx.doi.org/10.1007/s002850050042

    Google Scholar 

  24. Holmes, E.E.: Are diffusion models too simple? A comparison with telegraph models of invasion. Am. Nat. 142(5), 779–795 (1993)

    Google Scholar 

  25. Inagaki, T., Sakamoto, W., Kuroki, T.: Studies on schooling behavior of fish.2. mathematical-modeling of schooling form depending on intensity of mutual force between individuals. Bull. Jpn. Soc. Sci. Fish. 42(3), 265–270 (1976)

    Google Scholar 

  26. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Dordrecht/London (2009). http://books.google.es/books?id=db_U5lqmzlMC

  27. Kareiva, P., Shigesada, N.: Analyzing insect movement as a correlated random-walk. Oecologia 56(2–3), 234–238 (1983). doi:10.1007/BF00379695

    Article  Google Scholar 

  28. Katz, Y., Tunstrom, K., Ioannou, C.C., Huepe, C., Couzin, I.D.: Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl. Acad. Sci. U.S.A. 108(46), 18720–18725 (2011). doi:10.1073/pnas.1107583108

    Article  ADS  Google Scholar 

  29. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30(2), 225–234 (1971). doi:10.1016/0022-5193(71)90050-6. http://www.sciencedirect.com/science/article/pii/0022519371900506

    Google Scholar 

  30. Langlands, T.A.M., Henry, B.I.: Fractional chemotaxis diffusion equations. Phys. Rev. E 81, 051,102 (2010). doi:10.1103/PhysRevE.81.051102. http://link.aps.org/doi/10.1103/PhysRevE.81.051102

    Google Scholar 

  31. Lega, J.: Collective behaviors in two-dimensional systems of interacting particles. SIAM J. Appl. Dyn. Syst. 10(4), 1213–1231 (2011). doi:10.1137/100817449

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, Y.X., Lukeman, R., Edelstein-Keshet, L.: Minimal mechanisms for school formation in self-propelled particles. Physica D 237(5), 699–720 (2008). doi:10.1016/j.physd.2007.10.009

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Lovely, P.S., Dahlquist, F.W.: Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol. 50(2), 477–496 (1975)

    Article  Google Scholar 

  34. Méndez, V., Campos, D., Pagonabarraga, I., Fedotov, S.: Density-dependent dispersal and population aggregation patterns. J. Theor. Biol. 309, 113–120 (2012)

    Article  Google Scholar 

  35. Morales, J., Fortin, D., Frair, J., Merrill, E.: Adaptive models for large herbivore movements in heterogeneous landscapes. Landsc. Ecol. 20(3), 301–316 (2005). doi:10.1007/s10980-005-0061-9. 6th World Congress of the International-Association-for-Landscape-Ecology (IALE), Darwin, Australia, 13–17 July 2003

    Google Scholar 

  36. Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., Smouse, P.E.: A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. U.S.A. 105(49), 19052–19059 (2008). doi:10.1073/pnas.0800375105

    Article  ADS  Google Scholar 

  37. Newman, T., Grima, R.: Many-body theory of chemotactic cell-cell interactions. Phys. Rev. E 70(5, Part 1) (2004). doi:10.1103/PhysRevE.70.051916

    Google Scholar 

  38. Niwa, H.: Newtonian dynamical approach to fish schooling. J. Theor. Biol. 181(1), 47–63 (1996). doi:10.1006/jtbi.1996.0114

    Article  Google Scholar 

  39. Obrien, W., Browman, H., Evans, B.: Search strategies of foraging animals. Am. Sci. 78(2), 152–160 (1990)

    ADS  Google Scholar 

  40. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems. Springer, New York (2001)

    Book  Google Scholar 

  41. Panigrahi, B.K., Shi, Y., Lim, M.H. (eds.): Handbook of Swarm Intelligence. Springer, Berlin (2011)

    MATH  Google Scholar 

  42. Papastamatiou, Y.P., Cartamil, D.P., Lowe, C.G., Meyer, C.G., Wetherbee, B.M., Holland, K.N.: Scales of orientation, directed walks and movement path structure in sharks. J. Anim. Ecol. 80(4), 864–874 (2011). doi:10.1111/j.1365-2656.2011.01815.x

    Article  Google Scholar 

  43. Peruani, F., Starruss, J., Jakovljevic, V., Sogaard-Andersen, L., Deutsch, A., Baer, M.: Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Phys. Rev. Lett. 108(9) (2012). doi:10.1103/PhysRevLett.108.098102

    Google Scholar 

  44. Potdar, A.A., Jeon, J., Weaver, A.M., Quaranta, V., Cummings, P.T.: Human mammary epithelial cells exhibit a bimodal correlated random walk pattern. PLOS ONE 5(3) (2010). doi:10.1371/journal.pone.0009636

    Google Scholar 

  45. Reynolds, A.M.: Bridging the gulf between correlated random walks and Lévy walks: autocorrelation as a source of Lévy walk movement patterns. J. R. Soc. Interface 7(53), 1753–1758 (2010). doi:10.1098/rsif.2010.0292. http://dx.doi.org/10.1098/rsif.2010.0292

  46. Schweitzer, F.: Brownian Agents and Active Particles. Springer, Berlin (2007). doi:10.1007/978-3-540-73845-9. http://dx.doi.org/10.1007/978-3-540-73845-9

  47. Sims, D.W., Southall, E.J., Humphries, N.E., Hays, G.C., Bradshaw, C.J.A., Pitchford, J.W., James, A., Ahmed, M.Z., Brierley, A.S., Hindell, M.A., Morritt, D., Musyl, M.K., Righton, D., Shepard, E.L.C., Wearmouth, V.J., Wilson, R.P., Witt, M.J., Metcalfe, J.D.: Scaling laws of marine predator search behaviour. Nature 451(7182), 1098–1102 (2008). doi:10.1038/nature06518. http://dx.doi.org/10.1038/nature06518

    Google Scholar 

  48. Spieler, M.: Risk of predation affects aggregation size: a study with tadpoles of Phrynomantis microps (Anura: Microhylidae). Anim. Behav. 65(Part 1), 179–184 (2003). doi:10.1006/anbe.2002.2030

    Google Scholar 

  49. Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. Ser. 2 20, 196–212 (1921)

    Google Scholar 

  50. Tejedor, V., Voituriez, R., Bénichou, O.: Optimizing persistent random searches. Phys. Rev. Lett. 108(8) (2012). doi:10.1103/PhysRevLett.108.088103

    Google Scholar 

  51. Tindall, M., Porter, S., Maini, P., Gaglia, G., Armitage, J.: Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull. Math. Biol. 70(6), 1525–1569 (2008). http://dx.doi.org/10.1007/s11538-008-9321-6

    Google Scholar 

  52. Turchin, P.: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Sinauer, Sunderland (1998). http://books.google.es/books?id=ZbdmQgAACAAJ

  53. Turchin, P., Kareiva, P.: Aggregation in aphis-varians – an effective strategy for reducing predation risk. Ecology 70(4), 1008–1016 (1989). doi:10.2307/1941369

    Article  Google Scholar 

  54. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36(5), 823–841 (1930)

    Article  ADS  MATH  Google Scholar 

  55. Van Haastert, P.J.M.: A model for a correlated random walk based on the ordered extension of pseudopodia. PLOS Comput. Biol. 6(8) (2010). doi:10.1371/journal.pcbi.1000874

    Google Scholar 

  56. Viscido, S., Parrish, J., Grunbaum, D.: Individual behavior and emergent properties of fish schools: a comparison of observation and theory. Mar. Ecol. Prog. Ser. 273, 239–249 (2004). doi:10.3354/meps273239

    Article  Google Scholar 

  57. Weimerskirch, H., Bonadonna, F., Bailleul, F., Mabille, G., Dell’Omo, G., Lipp, H.: GPS tracking of foraging albatrosses. Science 295(5558), 1259 (2002). doi:10.1126/science.1068034

    Article  Google Scholar 

  58. Westerberg, L., Lindstrom, T., Nilsson, E., Wennergren, U.: The effect on dispersal from complex correlations in small-scale movement. Ecol. Model. 213(2), 263–272 (2008). doi:10.1016/j.ecolmodel.2007.12.011

    Article  Google Scholar 

  59. Wilson, W., Richards, S.: Consuming and grouping: resource-mediated animal aggregation. Ecol. Lett. 3(3), 175–180 (2000)

    Article  Google Scholar 

  60. Wu, M., Roberts, J.W., Kim, S., Koch, D.L., DeLisa, M.P.: Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique. Appl. Environ. Microbiol. 72(7), 4987–4994 (2006). doi:10.1128/AEM.00158-06

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Méndez, V., Campos, D., Bartumeus, F. (2014). Microscopic, Mesoscopic and Macroscopic Descriptions of Dispersal. In: Stochastic Foundations in Movement Ecology. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39010-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39010-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39009-8

  • Online ISBN: 978-3-642-39010-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics