Skip to main content

Multi-dimensional Systems of Conservation Laws: An Introductory Lecture

  • Conference paper
  • First Online:
Hyperbolic Conservation Laws and Related Analysis with Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 49))

Abstract

These notes are written after the crash course given at the ICMS conference on Hyperbolic conservation laws. We intend to review several aspects of the theory of the Cauchy problem and the Initial-boundary value problem (IBVP). On the one hand, we give a thorough account of the theory for linear, constant coefficient operators, following Gårding, Hersch, Kreiss and others. Hyperbolicity raises interesting questions in real algebraic geometry, a topic to which Petrowski’s school (in particular Oleĭnik) contributed. Next, we turn towards quasilinear systems and recall the interplay between entropies and symmetrizability. This leads us to the local existence of a classical solution. The global-in-time Cauchy problem necessitates weak solutions; these must be selected by admissibility criteria. We give a review of the various criteria that have been elaborated so far. Some of them lead us to the ‘viscous’ approximation of hyperbolic systems. We review the structural properties of these models, whose paradigm is the Navier-Stokes-Fourier (NSF) system of gas dynamics. This is more or less Kawashima’s theory, in the simplified description that we have given in recent papers. We end with results about singular limits, such as the convergence of NSF towards Euler-Fourier when Newtonian viscosity tends to zero, and the analysis of the principal sub-systems introduced by Boillat and Ruggeri. Despite the length of these notes, they contain only very few proofs. We focus instead on the concepts and the theorems of the theory.

2010 Mathematics Subject Classification Primary: 35L04, 35L60, 35L65, 35L67, 35K40, 35M30; Secondary: 76L05, 76N17

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gårding’s original definition involves well-posedness in C , a weaker notion than the one used here. In particular it is not tailored to apply Duhamel’s principle. Our stronger version of hyperbolicity used to be called strong hyperbolicity. It is more practical, at least when we have quasi-linear Cauchy problems in mind.

  2. 2.

    This is always true in the constant rank hyperbolic case.

  3. 3.

    A classical result for Lyapunov equations \(\Sigma X + {X}^{{\ast}}\Sigma = S\) where SH n is given and \(\Sigma \in \mathbf{H}_{n}\) is the unknown.

  4. 4.

    In [1], we missed this easy argument.

  5. 5.

    But it does not tell us whether these flows solve the Euler equation, that is if the Euler system is a good physical model.

  6. 6.

    Such perturbative effects are treated in Sect. 5.

  7. 7.

    This is associated with the conservation of mass.

  8. 8.

    There is at least one notable exception, namely the Maxwell system governing the electro-magnetic field in the vacuum. If it was dissipative, our world would be completely dark after billions of years. There are also the Einstein equations of the gravitational field and more generally all models dealing with fundamental forces.

  9. 9.

    The big open problem!

  10. 10.

    With the exception of the unphysical case s = s(θ), which means that p = p(ρ) only.

  11. 11.

    Actually, only strict convexity with respect to w is needed here.

  12. 12.

    The upper-left block is the Schur complement of D ww 2η in D2η.

References

  1. S. Benzoni-Gavage, D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations. First Order Systems and Applications. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2007)

    Google Scholar 

  2. S. Benzoni-Gavage, D. Serre, K. Zumbrun, Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32, 928–962 (2001)

    Article  MathSciNet  Google Scholar 

  3. S. Benzoni-Gavage, F. Rousset, D. Serre, K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary value problems. Proc. R. Soc. Edinb. 132A, 1073–1104 (2002)

    Article  MathSciNet  Google Scholar 

  4. G. Boillat, Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sci. Paris Sér. A 278, 909–912 (1974)

    MathSciNet  MATH  Google Scholar 

  5. G. Boillat, T. Ruggeri, Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137, 305–320 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften, vol. 325, 3rd edn. (Springer, Belin/Heidelberg, 2010)

    Google Scholar 

  7. J. Francheteau, G. Métivier, Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Astérisque 268 (2000)

    Google Scholar 

  8. H. Freistühler, The persistence of ideal shock waves. Appl. Math. Lett. 7, 1–5 (1994)

    Article  Google Scholar 

  9. H. Freistühler, T.-P. Liu, Nonlinear stability of overcompressive shock waves in a rotationally invariant system of viscous conservation laws. Commun. Math. Phys. 153, 147–158 (1993)

    Article  MATH  Google Scholar 

  10. H. Freistühler, P. Szmolyan, Spectral stability of small shock waves. Arch. Ration. Mech. Anal. 164, 287–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. K.O. Friedrichs, P.D. Lax, Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sci. U.S.A. 68, 1686–1688 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.A. Gardner, K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51, 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  13. S.P. Godunov, An interesting class of quasi-linear systems. Sov. Math. Doklady 2, 947–949 (1961)

    MATH  Google Scholar 

  14. J.W. Helton, V. Vinnikov, Linear matrix inequality representation of sets. Commun. Pure Appl. Math. 60, 654–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Hersh, Mixed problems in several variables. J. Math. Mech. 12, 317–334 (1963)

    MathSciNet  MATH  Google Scholar 

  16. K. Jenssen, G. Lyng, Evaluation of the Lopatinski condition for gas dynamics. Appendix to K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, in Handbook of Mathematical Fluid Dynamics, ed. by S. Friedlander, D. Serre, vol. III (North-Holland, Amsterdam, 2004), pp. 507–524

    Google Scholar 

  17. S. Kawashima, Systems of a hyperbolic parabolic type with applications to the equations of magnetohydrodynamics. PhD thesis, Kyoto University, 1983

    Google Scholar 

  18. A. Knutson, T. Tao, The honeycomb model of \(GL_{n}(\mathbb{C})\) tensor products. I. Proof of the saturation conjecture. J. Am. Math. Soc. 12, 1055–1090 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. H.-O. Kreiss, Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–298 (1970)

    Article  MathSciNet  Google Scholar 

  20. P.D. Lax, Hyperbolic systems of conservation laws. II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  21. P.D. Lax, Differential equations, difference equations and matrix theory. Commun. Pure Appl. Math. 11, 175–194 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Majda, The Stability of Multi-dimensional Shock Fronts. Memoirs of the American Mathematical Society, vol. 41 (AMS, Providence, 1983), p. 275 and The Existence of Multi-dimensional Shock Fronts. Memoirs of the American Mathematical Society, vol. 41 (AMS, Providence, 1983), p. 281

    Google Scholar 

  23. A. Majda, R. Pego, Stable viscosity matrices for systems of conservation laws. J. Differ. Equ. 56, 229–262 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Métivier, The block structure condition for symmetric hyperbolic systems. Bull. Lond. Math. Soc. 32, 689–702 (2000)

    Article  MATH  Google Scholar 

  25. G. Métivier, K. Zumbrun, Hyperbolic boundary value problems for symmetric systems with variable multiplicities. J. Differ. Equ. 211(1), 61–134 (2005)

    Article  MATH  Google Scholar 

  26. F. Murat, Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 489–507 (1978)

    MathSciNet  MATH  Google Scholar 

  27. R.L. Pego, Stable viscosities and shock profiles for systems of conservation laws. Trans. Am. Math. Soc. 282, 749–763 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Rauch, Energy inequalities for hyperbolic initial boundary value problems. PhD thesis, New York University (1971); L 2 is a continuable initial condition for Kreiss’ mixed problems. Commun. Pure Appl. Math. 25, 265–285 (1972)

    Google Scholar 

  29. R. Sakamoto, Hyperbolic Boundary Value Problems (Cambridge University Press, Cambridge, 1982). Translated from the Japanese by Katsumi Miyahara

    MATH  Google Scholar 

  30. D.H. Sattinger, On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Serre, La compacité par compensation pour les systèmes non linéaires de deux équations à une dimension d’espace. J. Math. Pures Appl. 65, 423–468 (1987)

    Google Scholar 

  32. D. Serre, Systems of Conservation Laws. Vol. I. Hyperbolicity, Entropies, Shock Waves; II. Geometric Structures, Oscillations, and Initial-Boundary Value Problems (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  33. D. Serre, Weyl and Lidskiĭ inequalities for general hyperbolic polynomials. Chin. Ann. Math. Ser. B 30, 785–802 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Serre, The structure of dissipative viscous system of conservation laws. Physica D293, 1381–1386 (2010)

    Google Scholar 

  35. D. Serre, Local existence for viscous system of conservation laws: H s-data with s > 1 + d∕2, in Nonlinear PDEs and Hyperbolic Wave Phenomena, ed. by H. Holden, K. Karlsen. Contemporary Mathematics, vol. 526 (AMS, Providence, 2010), pp. 339–358

    Google Scholar 

  36. D. Serre, Viscous system of conservation laws: Singular limits, in IMA Volume Nonlinear Conservation Laws and Applications, ed. by A. Bressan, G.-Q. Chen, M. Lewicka, D. Wang (Springer, New York, 2010)

    Google Scholar 

  37. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV. Research Notes in Mathematics, vol. 39 (Pitman, London, 1979), pp. 136–212

    Google Scholar 

  38. B. Temple, Systems of conservation laws with invariant submanifolds. Trans. Am. Math. Soc. 280, 781–795 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, in Handbook of Mathematical Fluid Dynamics, ed. by S. Friedlander, D. Serre, vol. III (North-Holland, Amsterdam, 2004), pp. 311–533

    Google Scholar 

  40. K. Zumbrun, Instantaneous shock location and one-dimensional nonlinear stability of viscous shock waves. Q. Appl. Math. 69, 177–202 (2011)

    MathSciNet  MATH  Google Scholar 

  41. K. Zumbrun, D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Serre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Serre, D. (2014). Multi-dimensional Systems of Conservation Laws: An Introductory Lecture. In: Chen, GQ., Holden, H., Karlsen, K. (eds) Hyperbolic Conservation Laws and Related Analysis with Applications. Springer Proceedings in Mathematics & Statistics, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39007-4_12

Download citation

Publish with us

Policies and ethics