Skip to main content

The Semigroup Approach to Conservation Laws with Discontinuous Flux

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 49))

Abstract

The model one-dimensional conservation law with discontinuous spatially heterogeneous flux is

$$\displaystyle{ u_{t} + \mathfrak{f}(x,u)_{x} = 0,\quad \mathfrak{f}(x,\cdot ) = {f}^{l}(x,\cdot )1\!\!1_{ x<0}\! + {f}^{r}(x,\cdot )1\!\!1_{ x>0}. }$$
(EvPb)

We prove well-posedness for the Cauchy problem for (EvPb) in the framework of solutions satisfying the so-called adapted entropy inequalities.Exploiting the notion of integral solution that comes from nonlinear semigroup theory, we propose a way to circumvent the use of strong interface traces for the evolution problem (EvPb) (in fact, proving the existence of such traces for the case of x-dependent f l,r would be a delicate technical issue). The difficulty is shifted to the study of the associated one-dimensional stationary problem \(u + \mathfrak{f}(x,u)_{x} = g\), where the existence of strong interface traces of entropy solutions is an easy fact. We give a direct proof of this, avoiding the subtle arguments of the kinetic formulation (Kwon YS, Vasseur A (2007) Arch Ration Mech Anal 185(3):495–513) and of the H-measure approach (Panov EY (2007) J Hyperbolic Differ Equ 4(4):729–770).

2010 Mathematics Subject Classification Primary: 35L65, 35L04; Secondary: 47H06, 47H20

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Actually, a non-degeneracy of f l,r on intervals is needed for existence of such traces, see assumption (H3). But if the degeneracy happens, one can reformulate (1) in terms of the traces of some “singular mapping functions” Vf l,r(u), see [9].

  2. 2.

    See [9] for more general assumptions that ensure L bounds, which have to be adapted to the inhomogeneous case.

  3. 3.

    For the multi-dimensional domains treated in the Appendix, one uses an analogous definition based upon a parametrizaton of a neighbourhood of \(\partial \Omega \) by \((\sigma,h) \in \partial \Omega \times (0, 1)\).

  4. 4.

    To be specific, the Bardos-LeRoux-Nédélec formulation with a strong boundary trace (cf. [30]) is used not in \(\Omega \) but in specially selected subdomains of \(\Omega \), so that the existence of strong boundary traces comes “for free”

  5. 5.

    Consider a conservation law of the form div(t,x)ϕ(t,x,u) = h(t,x) set up in a space-time domain Q. We say that the boundary ∂ Q is space-like if the map u↦ϕ(t,x,u) ⋅ n(t,x) is strictly decreasing for all points (t,x) of the boundary. In this case, the local change of variables w(t,x):= ϕ(t,x,u) ⋅ n(t,x) (the field of exterior unit normal vectors n(⋅) on ∂ Q should be lifted in a neighbourhood of ∂ Q) reduces the situation to a standard conservation law with the time direction given by the vector field n(⋅).

  6. 6.

    To justify this claim, the arguments are the same as for the time-continuity of entropy solutions. Indeed, we have ensured that the normal component of the flux is a strictly increasing function: this makes the normal direction to the boundary time-like. Let us stress that the existence of a strong trace for this case is considerably easier to justify than in the general case: as a matter of fact, it follows from a local application of entropy inequalities. We refer to [19] and to [8, Lemma A4] for the arguments that can be used in this context.

References

  1. J.J. Adimurthi, G.D. Veerappa Gowda, Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42(1), 179–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. S.M. Adimurthi, G.D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(4), 783–837 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Andreianov, One-dimensional conservation law with boundary conditions: general results and spatially inhomogeneous case, in Proceedings of HYP-2012 Conference, Padua (accepted). Available as HAL preprint http://hal.archives-ouvertes.fr/hal-00761664

  4. B. Andreianov, F. Bouhsiss, Uniqueness for an elliptic-parabolic problem with Neumann boundary condition. J. Evol. Equ. 4(2), 273–295 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Andreianov, C. Cancès, Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks’ medium. Comput. Geosci. 17(3), 551–572 (2013)

    Article  MathSciNet  Google Scholar 

  6. B. Andreianov, M.K. Gazibo, Entropy formulation of degenerate parabolic equation with zero-flux boundary condition. ZAMP – Zeitschr. Angew. Math. Phys. (2013). doi:10.1007/s00033-012-0297-6

    Google Scholar 

  7. B. Andreianov, K. Sbihi, Well-posedness of general boundary-value problems for scalar conservation laws. Trans. AMS (to appear). Available as HAL preprint http://hal.archives-ouvertes.fr/hal-00708973

  8. B. Andreianov, M. Bendahmane, K.H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ. 7(1), 1–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Andreianov, K.H. Karlsen, N.H. Risebro, A theory of L 1​-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201, 27–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Audusse, B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. R. Soc. Edinb. A 135(2), 253–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Baiti, H.K. Jenssen, Well-posedness for a class of 2 × 2 conservation laws with L data. J. Differ. Equ. 140(1), 161–185 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Bardos, A.Y. Le Roux, J.-C. Nédélec, First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(4), 1017–1034 (1979)

    Article  MATH  Google Scholar 

  13. P. Bénilan, Équations d’évolution dans un espace de Banach quelconque et applications (Thèse d’état, Orsay, 1972)

    Google Scholar 

  14. P. Bénilan, S.N. Kruzhkov, Conservation laws with continuous flux functions. NoDEA Nonlinear Differ. Equ. Appl. 3(4), 395–419 (1996)

    Article  MATH  Google Scholar 

  15. P. Bénilan, P. Wittbold, On mild and weak solutions of elliptic-parabolic problems. Adv. Differ. Equ. 1(6), 1053–1073 (1996)

    MATH  Google Scholar 

  16. P. Bénilan, J. Carrillo, P. Wittbold, Renormalized entropy solutions of scalar conservation laws. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(2), 313–327 (2000)

    Google Scholar 

  17. P. Bénilan, M.G. Crandall, A. Pazy, Nonlinear Evolution Equations in Banach Spaces (preprint book)

    Google Scholar 

  18. R. Bürger, K.H. Karlsen, J. Towers, An Engquist-Osher type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47, 1684–1712 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Cancès, T. Gallouët, On the time continuity of entropy solutions. J. Evol. Equ. 11, 43–55 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Carrillo, P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differ. Equ. 156(1), 93–121 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. G.-Q. Chen, H. Frid, Divergence-Measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147, 89–118 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Eymard, T. Gallouët, R. Herbin, in Finite Volume Methods, ed. by P. Ciarlet, J.-L. Lions. Handbook of Numerical Analysis, vol. VII (North-Holland, 2000)

    Google Scholar 

  23. S.N. Kruzhkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S) 81(123), 228–255 (1970)

    Google Scholar 

  24. Y.-S. Kwon, A. Vasseur, Strong traces for solutions to scalar conservation laws with general flux. Arch. Ration. Mech. Anal. 185(3), 495–513 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Málek, J. Nečas, M. Rokyta, M. Ružička, Weak and Measure-Valued Solutions to Evolutionary PDEs (Chapman & Hall, London, 1996)

    MATH  Google Scholar 

  26. F. Otto, Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci. Paris Sér. I 322, 729–734 (1996)

    MathSciNet  MATH  Google Scholar 

  27. E.Y. Panov, Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. J. Hyperbolic Differ. Equ. 2(4), 885–908 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. E.Y. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4(4), 729–770 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Vallet, Dirichlet problem for a nonlinear conservation law. Rev. Math. Complut. 13(1), 231–250 (2000)

    MathSciNet  MATH  Google Scholar 

  30. A. Vasseur, Strong traces for weak solutions to multidimensional conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90(3), 563–596 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Kenneth H. Karlsen for turning his attention to the difficulty treated in the Appendix. The work on this paper was partially supported by the French ANR project CoToCoLa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Andreianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andreianov, B. (2014). The Semigroup Approach to Conservation Laws with Discontinuous Flux. In: Chen, GQ., Holden, H., Karlsen, K. (eds) Hyperbolic Conservation Laws and Related Analysis with Applications. Springer Proceedings in Mathematics & Statistics, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39007-4_1

Download citation

Publish with us

Policies and ethics