3D Tracking and Control of UAV Using Planar Faces and Monocular Camera

  • Manlio Barajas
  • José Pablo Dávalos-Viveros
  • J. L. Gordillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)


A method for tracking the 3D pose and controlling an unmanned aerial vehicle (UAV) is presented. Planar faces of target vehicle are tracked using the Efficient Second Order Minimization algorithm, one at a time. Homography decomposition is used to recover the 3D pose of the textured planar face that is being tracked. Then, a cuboid model is used to estimate the homographies of the remaining faces. This allows switching faces as the object moves and rotates. Cascade and single PID controllers are used to control the vehicle pose. Results confirm that this approach is effective for real-time aerial vehicle control using only one camera. This is a step towards an automatic 3D pose tracking system.


3D Tracking 3D Pose Estimation Aerial Vehicle Control Homography Decomposition Cuboid Tracking Polygon Mesh Tracking 


  1. 1.
    Baker, S., Matthews, I.: Lucas-Kanade 20 Years On: A Unifying Framework: Part 1. International Journal of Computer Vision 56, 221–255 (2004)CrossRefGoogle Scholar
  2. 2.
    Barajas, M., Esparza, J., Gordillo, J.L.: Towards Automatic 3D Pose Tracking through Polygon Mesh Approximation. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 531–540. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bouchafa, S., Zavidovique, B.: Obstacle Detection “for free” in the C-velocity space. In: 14th IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 308–313 (2011)Google Scholar
  4. 4.
    Brown, J.A., Capson, D.W.: A Framework for 3D Model-Based Visual Tracking Using a GPU-Accelerated Particle Filter. IEEE Transactions on Visualization and Computer Graphics 18, 68–80 (2011)CrossRefGoogle Scholar
  5. 5.
    Cobzas, D., Sturm, P.: 3D SSD Tracking with Estimated 3D Planes. In: The 2nd Canadian Conference on Computer and Robot Vision, pp. 129–134 (2005)Google Scholar
  6. 6.
    Daewon, L., Ryan, T., Kim, H.J.: Autonomous landing of a VTOL UAV on a moving platform using image-based visual servoing. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 971–976 (2012)Google Scholar
  7. 7.
    Manz, M., Luettel, T.: Monocular model-based 3D vehicle tracking for autonomous vehicles in unstructured environment. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2465–2471 (2011)Google Scholar
  8. 8.
    Malis, E.: Improving vision-based control using efficient second-order minimization techniques. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1843–1848 (2004)Google Scholar
  9. 9.
    Mondragón, I.F., Campoy, P., Martínez, C., Olivares-Méndez, M.A.: 3D pose estimation based on planar object tracking for UAVs control. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 35–41 (2010)Google Scholar
  10. 10.
    Munozsalinas, R., Aguirre, E., Garciasilvente, M.: People detection and tracking using stereo vision and color. Image and Vision Computing 25, 995–1007 (2007)CrossRefGoogle Scholar
  11. 11.
    Ozawa, R., Chaumette, F.: Dynamic visual servoing with image moments for a quadrotor using a virtual spring approach. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5670–5676 (2011)Google Scholar
  12. 12.
    Panin, G., Knoll, A.: Mutual Information-Based 3D Object Tracking. International Journal of Computer Vision 78, 107–118 (2007)CrossRefGoogle Scholar
  13. 13.
    Salazar, S., Romero, H., Gomez, J., Lozano, R.: Real-time stereo visual servoing control of an UAV having eight-rotors. In: 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–11 (2009)Google Scholar
  14. 14.
    Shao, X., Zhao, H., Nakamura, K., Katabira, K., Shibasaki, R., Nakagawa, Y.: Detection and tracking of multiple pedestrians by using laser range scanners. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2174–2179 (2007)Google Scholar
  15. 15.
    Tonko, M., Nagel, H.-H.: Model-Based Stereo-Tracking of Non-Polyhedral Objects for Automatic Disassembly Experiments. International Journal of Computer Vision 37, 99–118 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Manlio Barajas
    • 1
  • José Pablo Dávalos-Viveros
    • 1
  • J. L. Gordillo
    • 1
  1. 1.Center for Intelligent SystemsTecnológico de MonterreyMonterreyMéxico

Personalised recommendations