3D Representation for Object Detection and Verification

  • Luis Villavicencio
  • Carlos Lopez-Franco
  • Nancy Arana-Daniel
  • Lilibet Lopez-Franco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)


In this paper we introduce a representation for object verification and a system for object recognition based on local features, invariant moments, silhouette creation and a ’net’ reduction for depth information. The results are then compared with some of the most recent approaches for object detection such as local features and orientation histograms. Additionally, we used depth information to create descriptors that can be used for 3D verification of detected objects. Moments are computed from a 3D set of points which are arranged to create a descriptive object model. This information showed to be of matter in the decision whether the object is present within the analyzed image segment, or not.


object detection object verification visual pattern recognition 


  1. 1.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, Inc. (1995)Google Scholar
  2. 2.
    Baerveldt, A.J.: A vision system for object verification and localization based on local features. Robotics and Autonomous Systems 34(2-3), 83–92 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  5. 5.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From Images to Geometric Models. Springer (2003)Google Scholar
  6. 6.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)zbMATHCrossRefGoogle Scholar
  7. 7.
    Belkasim, S., Shridhar, M., Ahmadi, M.: Pattern recognition with moment invariants: A comparative study and new results. Pattern Recognition 24(12), 1117–1138 (1991)CrossRefGoogle Scholar
  8. 8.
    Mercimek, M., Gulez, K., Mumcu, T.V.: Real object recognition using moment invariants. Sadhana 30, 765–775 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Rizon, M., Yazid, H., Saad, P., Yeon, A., Shakaff, M., Saad, A.R.M., Mamat, R., Yacoob, S., Desa, H., Karthigayan, M.: Object detection using geometric invariant moment. American Journal of Applied Sciences 2, 1876–1878 (2006)Google Scholar
  10. 10.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893. IEEE Computer Society, Washington, DC (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luis Villavicencio
    • 1
  • Carlos Lopez-Franco
    • 1
  • Nancy Arana-Daniel
    • 1
  • Lilibet Lopez-Franco
    • 1
  1. 1.Computer Science Department, Exact Sciences and Engineering Campus, CUCEIUniversity of GuadalajaraMexico

Personalised recommendations