Virtual Target Formulation for Singularity-Free Visual Control Using the Trifocal Tensor

  • H. M. Becerra
  • J. B. Hayet
  • C. Sagüés
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)


We present a novel approach for visual control of wheeled mobile robots, extending the existing works that use the trifocal tensor as source for measurements. In our approach, singularities typically encountered in this kind of methods are removed by formulating the control problem based on the trifocal tensor and by using a virtual target vertical translated from the real target. A single controller able to regulate the robot pose towards the desired configuration without local minima is designed. Additionally, the proposed approach is valid for perspective cameras as well as catadioptric systems obeying a central camera model. All these contributions are supported by convincing simulations.


Visual control virtual target trifocal tensor 


  1. 1.
    Chaumette, F., Hutchinson, S.: Visual servo control part I: Basic approaches. IEEE Robotics and Aut. Mag. 13(14), 82–90 (2006)CrossRefGoogle Scholar
  2. 2.
    Chaumette, F., Hutchinson, S.: Visual servo control, part II: Advanced approaches. IEEE Robotics and Aut. Mag. 14(1), 109–118 (2007)CrossRefGoogle Scholar
  3. 3.
    Mariottini, G.L., Oriolo, G., Prattichizzo, D.: Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Transactions on Robotics 23(1), 87–100 (2007)CrossRefGoogle Scholar
  4. 4.
    López-Nicolás, G., Guerrero, J.J., Sagüés, C.: Visual control through the trifocal tensor for nonholonomic robots. Robotics and Auton. Syst. 58(2), 216–226 (2010)CrossRefGoogle Scholar
  5. 5.
    Fang, Y., Dixon, W.E., Dawson, D.M., Chawda, P.: Homography-based visual servo regulation of mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B 35(5), 1041–1050 (2005)CrossRefGoogle Scholar
  6. 6.
    Usai, A., Di Giamberardino, P.: Visual feedback for nonholonomic mobile robots: Homography based approach. In: Rigatos, G. (ed.) Intelligent Industrial Systems, pp. 152–181. IGI Global (2010)Google Scholar
  7. 7.
    Becerra, H.M., López-Nicolás, G., Sagüés, C.: A sliding mode control law for mobile robots based on epipolar visual servoing from three views. IEEE Transactions on Robotics 27(1), 175–183 (2011)CrossRefGoogle Scholar
  8. 8.
    Becerra, H.M., López-Nicolás, G., Sagues, C.: Omnidirectional visual control of mobile robots based on the 1D trifocal tensor. Robotics and Autonomous Systems 58(6), 796–808 (2010)CrossRefGoogle Scholar
  9. 9.
    López-Nicolás, G., Sagüés, C., Guerrero, J.J.: Parking with the essential matrix without short baseline degeneracies. In: IEEE Int. Conf. on Robotics and Automation, pp. 1098–1103 (2009)Google Scholar
  10. 10.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. 2. Cambridge University Press (2004)Google Scholar
  11. 11.
    Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and practical implications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 445–461. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Slotine, J.J.E., Li, W.: Applied nonlinear control. Prentice Hall (1991)Google Scholar
  13. 13.
    Levant, A., Fridman, L.: Higher order sliding modes. In: Perruqueti, W., Barbot, J. (eds.) Sliding Mode Control in Engineering, Marcel Dekker, N.Y., USA, pp. 53–101 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • H. M. Becerra
    • 1
  • J. B. Hayet
    • 1
  • C. Sagüés
    • 2
  1. 1.Centro de Investigación en Matemáticas (CIMAT)GuanajuatoMexico
  2. 2.Instituto de Investigación en Ingeniería de AragónUniversidad de ZaragozaZaragozaSpain

Personalised recommendations