Advertisement

A Fuzzy Scheme for Gait Cycle Phase Detection Oriented to Medical Diagnosis

  • Mario I. Chacon-Murguia
  • Omar Arias-Enriquez
  • Rafael Sandoval-Rodriguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)

Abstract

Gait cycle phase detection provides useful information to diagnose possible problems on walking. The work reported here proposes the analysis of gait kinematic signals, extracted from videos, through fuzzy logic to automatically determine the different phases in the human gait cycle. The function of the fuzzy system is to detect the gait phases, loading response, mid-stance, terminal stance, pre-swing, initial swing, mid-swing, and terminal swing, using 2D information from a sagittal plane. The system was tested with normal and non-normal gait cycles. Experimental findings proved that the fuzzy detection system is able to correctly locate the phases using only 2D information. The maximum phase timing shift error generated was 2%. Thus, it may be concluded that the proposed system can be used to analyses gait kinematic and detect gait phases in normal cycle and absences of them in non-normal cycles. This information can be considered for gait anomaly detection and therapeutic purposes.

Keywords

gait phase analysis fuzzy systems video segmentation 

References

  1. 1.
    Perry, A.J.: Gait Analysis: Normal and Pathological Function. Slack, NJ (1992)Google Scholar
  2. 2.
    Senanayake, B.C.M., Senanayake, S.M.: Computational Intelligent Gait Phase Detection System to Identify Pathological Gait. IEEE Transactions on Information Technology in Biomedicine 14(5), 1173–1179 (2010)CrossRefGoogle Scholar
  3. 3.
    Cardenas Maciel, C.S.L., Castillo, O., Aguilar, L.T.: Generation of Walking Periodic Motions for a Biped Robot Via Genetic Algorithms. Appl. Soft Comput. 11(8), 5306–5314 (2011)CrossRefGoogle Scholar
  4. 4.
    Cardenas Maciel, D.S.L., Castillo, O., Aguilar, L.T., Castro, J.R.: A TS Fuzzy Logic Controller for Biped Robot Walking Based on Adaptive Network Fuzzy Inference System. In: Proceeding of the IJCNN, pp. 1–8 (2010)Google Scholar
  5. 5.
    Courtney, J., Paor, A.M.: A Monocular Marker-Free Gait Measurement System. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(4), 453–460 (2010)CrossRefGoogle Scholar
  6. 6.
    Kirtley, F.C.: Clinical gayt analysis, http://www.clinicalgaitanalysis.com/
  7. 7.
    Lauer, G.R., Smith, B.T., Betz, R.R.: Application of a Neuro-fuzzy Network for Gait Event Detection Using Electromyography in the Child With Cerebral palsy. IEEE Transactions on Biomedical Engineering 52(9), 1532–1540 (2005)CrossRefGoogle Scholar
  8. 8.
    Pappas, O.I., Popovic, M.R., Keller, T., Dietz, V., Morari, M.: A reliable gait phase detection system. IEEE Trans Neural Systems and Rehabilitation Engineering 9(2), 113–125 (2001)CrossRefGoogle Scholar
  9. 9.
    Goffredo, I.M., Nixon, M., Carter, J.: 2D Markerless Gait Analysis. In: Proceedings of the 4th European Congress for Medical And Biomedical Engineering (2008)Google Scholar
  10. 10.
    Yuan, Q., Chen, I., Lee, S.P.: SLAC: 3D localization of human based on kinetic human movement capture. In: Proceedings of IEEE Robotics and Automation, pp. 848–853 (2011)Google Scholar
  11. 11.
    Arias-Enriquez, O.: Human Gait Analysis Based on 2D/Kinect Visual Perception and Diagnosis With Fuzzy Logic. Master thesis, Chihuahua Institute of Technology (2012)Google Scholar
  12. 12.
    Senanayake, C., Senanayake, S.M.: Evaluation of gait parameters for gait phase detection during walking. In: IEEE Proceedings of Multisensor Fusion and Integration for Intelligent Systems, Salt Lake City, UT, pp. 127–132 (2010)Google Scholar
  13. 13.
    MacDonald, C., Smith, D., Brower, R., Ceberio, M., Sarkodie-Gyan, T.: Determination of Human Gait Phase Using Fuzzy Inference. In: Proceedings of IEEE Rehabilitation Roboticsonal, pp. 661–665 (2007)Google Scholar
  14. 14.
    Chacon-Murguia, M.I., Sandoval-Rodriguez, R., Arias-Enriquez, O.: Human Gait Feature Extraction Including Kinematic Analysis Toward Robotic Power Assist. International Journal of Advanced Robotic Systems 9(68) (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mario I. Chacon-Murguia
    • 1
  • Omar Arias-Enriquez
    • 1
  • Rafael Sandoval-Rodriguez
    • 1
  1. 1.Visual Perception Applications on Robotic LabChihuahua Institute of TechnologyMexico

Personalised recommendations