A Multiscale Erosion Operator for Discriminating Ground Points in LiDAR Point Clouds

  • José Luis Silván-Cárdenas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)


Digital terrain models (DTM) are basic products required for a number of applications and decision making processes. Nowadays, high spatial-resolution DTMs are primarily produced through airborne laser scanners (ALS). However, the ALS does not directly deliver DTMs but a dense cloud of 3-d points that embeds both terrain elevation and height of natural and human-made features. Such a point cloud is generally rasterized and referred to as the digital surface model (DSM). The discrimination of aboveground objects from terrain, also termed ground filtering, is a basic processing step that has proved especially difficult for large areas of complex terrain characteristics. This paper presents the development of a multiscale erosion operator for removing aboveground features in the DSM, thus producing a surface that is close to the DTM. Such an approximation was used to separate ground from non-ground points in the original point-cloud and the discrimination accuracy was assessed using publicly available data. Results indicated an improvement over a previously published method.


Remote sensing LiDAR Ground filtering multiscale Hermite transform 


  1. 1.
    Pfeifer, N., Mandlburger, G.: 11. In: LiDAR Data Filtering and DTM Generation, pp. 307–333. CRC Press, Boca Raton (2009)Google Scholar
  2. 2.
    Axelson, P.: Processing of laser scanner data - algorithms and applications. ISPRS Journal of Photogrametry and Remote Sensing 54(2-3), 138–147 (1999)CrossRefGoogle Scholar
  3. 3.
    Meng, X., Currit, N., Zhao, K.: Ground filtering algorithms for airborne lidar data: A review of critical issues. Remote Sensing 2(3), 833–860 (2010)CrossRefGoogle Scholar
  4. 4.
    Thuy, T., Tokunaga, M.: Filtering airborne laser scanner data: A wavelet-based clustering method. Photogrammetric Engineering and Remote Sensing 70(11), 1267–1274 (2004)Google Scholar
  5. 5.
    Chen, Q., Gong, P., Baldocchi, D., Xie, G.: Filtering airborne laser scanning data with morphological methods. Photogrammetric Engineering & Remote Sensing 73(2), 175–185 (2007)Google Scholar
  6. 6.
    Evans, J.S., Hudak, A.T.: A multiscale curvature algorithm for classifying discrete return lidar in forested environments. IEEE Transactions on Geoscience and Remote Sensing 45(4), 1029–1038 (2007)CrossRefGoogle Scholar
  7. 7.
    Silván-Cárdenas, J., Wang, L.: A multi-resolution approach for filtering LiDAR altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing 61(1), 11–22 (2006)CrossRefGoogle Scholar
  8. 8.
    Silván-Cárdenas, J., Escalante-Ramírez, B.: The multiscale Hermite transform for local orientation analysis. IEEE Transactions on Image Processing 15(5), 1236–1253 (2006)CrossRefGoogle Scholar
  9. 9.
    Silván-Cárdenas, J., Wang, C.W.L., Rogerson, P., Feng, T., Kamphaus, B.: Assessing fine-spatial-resolution remote sensing for small-area population estimation. International Journal of Remote Sensing 31(21), 5605–5634 (2010)CrossRefGoogle Scholar
  10. 10.
    Silván-Cárdenas, J.L., Wang, L.: Extraction of buildings footprint from lidar altimetry data with the hermite transform. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 314–321. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Silván-Cárdenas, J.L.: A segmentation method for tree crown detection and modelling from lidar measurements. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera López, J.A., Boyer, K.L. (eds.) MCPR 2012. LNCS, vol. 7329, pp. 65–74. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Silván-Cárdenas, J., Wang, L.: A multiscale approach for ground filtering from LiDAR altimetry measurements. In: Scale Issues in Remote Sensing. John Wiley and Sons (to appear, 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • José Luis Silván-Cárdenas
    • 1
  1. 1.Centro de Investigación en Geografía y Geomática “Ing. Jorge L. Tamayo” A. C.Mexico D.F.Mexico

Personalised recommendations