Perception Aptitude Improvement of an Odor Sensor: Model for a Biologically Inspired Nose

  • B. Lorena Villarreal
  • J. L. Gordillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)


Biologically inspired systems are a common tendency in robotics. Nowadays the common robots use human-like behaving senses as capabilities as soon as they can see, hear and touch, but the senses of smell and taste, are starting to emerge. There are three main problems to solve when including a smell sensor into a robot: the environmental model or the way the odor molecules behave either in outdoors or indoors, the sensor model, and the algorithmic or process model. One of the difficulties of developing chemical sensors versus another sensor is that chemical reactions tend to change the sensor composition often in a way that is nonreversible. Also, the odor exposure quickly saturates the sensor which needs a lot of time to be ready for the next measure. This is why; the smell system design must be biologically inspired. In this paper we present the results of the sensor model including the biological inspired process of aspiration and the design of a smell system device.


smell bio-inspired nose model nose system nostrils smell sense chemical sensor model 


  1. 1.
    Yasuda, G.: A Distributed Autonomous Control Architecture for Synchronization and Coordination of Multiple Robot Systems. In: 2012 Proceedings of Sice. Annual Conference (Sice), pp. 1864–1869 (2012)Google Scholar
  2. 2.
    Lochmatter, T., Martinoli, A., Wani, M.X.C., Casasent, D., Kurgan, L., Hu, T., Hafeez, K.: Simulation Experiments with Bio-Inspired Algorithms for Odor Source Localization in Laminar Wind Flow. In: Proceedings of the Seventh International Conference on Machine Learning and Applications, pp. 437–443 (2008)Google Scholar
  3. 3.
    Lochmatter, T., Martinoli, A., Khatib, O.: Tracking Odor Plumes in a Laminar Wind Field with Bio-inspired Algorithms. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. STAR, vol. 54, pp. 473–482. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Huang, Q., Yu, Z., Zhang, W., Duan, X., Huang, Y., Li, K.: Generation of Humanoid Walking Pattern Based on Human Walking Measurement. In: 2008 8th IEEE-Ras International Conference on Humanoid Robots (Humanoids 2008), pp. 99–104 (2008)Google Scholar
  5. 5.
    Goldstein, E.B.: Sensation and Perception. Wadsworth, Cengage Learning, Canada (2010)Google Scholar
  6. 6.
    Browne, C., Stafford, K., Fordham, R.: The use of scent-detection dogs. Irish Veterinary Journal 59, 97–104 (2006)Google Scholar
  7. 7.
    Li, J., Meng, Q., Wang, Y., Zeng, M.: Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm. Autonomous Robots 30, 281–292 (2011)CrossRefGoogle Scholar
  8. 8.
    Loutfi, A., Coradeschi, S., Karlsson, L., Broxvall, M.: Putting Olfaction into Action: Anchoring Symbols to Sensor Data Using Olfaction and Planning (2005)Google Scholar
  9. 9.
    Loutfi, A., Coradeschi, S., Lilienthal, A., Gonzalez, J.: Gas distribution mapping of multiple odour sources using a mobile robot. Robotica 27, 311–319 (2009)CrossRefGoogle Scholar
  10. 10.
    Gardner, J., Bartlett, P.: A brief-history of electronic noses. Sensors and Actuators B-Chemical 18, 211–220 (1994)Google Scholar
  11. 11.
    Gonzalez-Jimenez, J., Monroy, J., Blanco, J.: The Multi-Chamber Electronic Nose-An Improved Olfaction Sensor for Mobile Robotics. Sensors 11, 6145–6164 (2011)CrossRefGoogle Scholar
  12. 12.
    Crank, J.: The mathematics of diffusion. Oxford Univerity Press (1976)Google Scholar
  13. 13.
    Pashami, S., Lilienthal, A., Trincavelli, M.: Detecting Changes of a Distant Gas Source with an Array of MOX Gas Sensors. Sensors 12, 16404–16419 (2012)CrossRefGoogle Scholar
  14. 14.
    Kowadlo, G., Russell, R.A.: Robot Odor Localization: A Taxonomy and Survey. The International Journal of Robotics Research 27, 869–894 (2008)CrossRefGoogle Scholar
  15. 15.
    Miyatani, I., Ishida, H.: Active Stereo Nose: Using Air Curtain to Enhance the Directivity. 2010 IEEE Sensors, 1522–1525 (2010)Google Scholar
  16. 16.
    Lilienthal, A., Duckett, T.: Building gas concentration gridmaps with a mobile robot. Robotics and Autonomous Systems 48, 3–16 (2004)CrossRefGoogle Scholar
  17. 17.
    Thomas, L., Xavier, R., Alcherio, M.: Odor Source Localization with Mobile Robots. Bulletin of the Swiss Society for Automatic Control 46, 11–14 (2007)Google Scholar
  18. 18.
    Zhao, K., Scherer, P., Hajiloo, S., Dalton, P.: Effect of anatomy on human nasal air flow and odorant transport patterns: Implications for olfaction. Chemical Senses 29, 365–379 (2004)CrossRefGoogle Scholar
  19. 19.
    Craven, B., Paterson, E., Settles, G.: The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. Journal of the Royal Society Interface 7, 933–943 (2010)CrossRefGoogle Scholar
  20. 20.
    Reddy, S.S., Ryan, M.W.: Turbinate Dysfunction: Focus on the role of the inferior turbinates in nasal airway obstruction. UTMB, Dept. of Otolaryngology (2003)Google Scholar
  21. 21.
    Hornung, D.E., Mozell, M.M. (eds.): Accessibility of odorant molecules to the receptors, New York (1981)Google Scholar
  22. 22.
    Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W.: Handbook of Machine Olfaction Electronic Nose Technology (2003)Google Scholar
  23. 23.
    Hahn, I., Scherer, P.W., Mozell, M.M.: Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. Modeling Physiol. 75, 2273–2287 (1993)Google Scholar
  24. 24.
    Ganong, W.F.: Review of medical physiology. Prentice Hall (1997)Google Scholar
  25. 25.
    Villarreal, B.L., Hassard, C., Gordillo, J.L.: Finding the Direction of an Odor Source by Using Biologically Inspired Smell System. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 551–560. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Villarreal, B.L., Gordillo, J.L.: Method and artificial olfactive system. IMPI Instituto Mexicano de la Propiedad Intelectual, Mx/a/2012/014508, México (2012)Google Scholar
  27. 27.
    Lilienthal, A., Duckett, T.: A stereo electronic nose for a mobile inspection robot. In: Proceedings of the IEEE International Workshop on Robotic SensingGoogle Scholar
  28. 28.
    Villarreal, B.L., Gordillo, J.L.: Directional Aptitude Analysis in Odor Source Localization Techniques for Rescue Robots Applications. In: 10th Mexican International Conference on Artificial Intelligence (MICAI), pp. 109–114 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. Lorena Villarreal
    • 1
  • J. L. Gordillo
    • 1
  1. 1.Center for Robotics and Intelligent SystemsTecnológico de MonterreyMonterreyMéxico

Personalised recommendations