Skip to main content

Control of HPV Infection and Related Cancer Through Vaccination

  • Chapter
  • First Online:
Viruses and Human Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 193))

Abstract

Human papillomavirus (HPV), the most common sexually transmitted virus, and its associated diseases continue to cause significant morbidity and mortality in over 600 million infected individuals. Major progress has been made with preventative vaccines, and clinical data have emerged regarding the efficacy and cross-reactivity of the two FDA approved L1 virus like particle (VLP)-based vaccines. However, the cost of the approved vaccines currently limits their widespread use in developing countries which carry the greatest burden of HPV-associated diseases. Furthermore, the licensed preventive HPV vaccines only contain two high-risk types of HPV (HPV-16 and HPV-18) which can protect only up to 75 % of all cervical cancers. Thus, second generation preventative vaccine candidates hope to address the issues of cost and broaden protection through the use of more multivalent L1-VLPs, vaccine formulations, or alternative antigens such as L1 capsomers, L2 capsid proteins, and chimeric VLPs. Preventative vaccines are crucial to controlling the transmission of HPV, but there are already hundreds of millions of infected individuals who have HPV-associated lesions that are silently progressing toward malignancy. This raises the need for therapeutic HPV vaccines that can trigger T cell killing of established HPV lesions, including HPV-transformed tumor cells. In order to stimulate such antitumor immune responses, therapeutic vaccine candidates deliver HPV antigens in vivo by employing various bacterial, viral, protein, peptide, dendritic cell, and DNA-based vectors. This book chapter will review the commercially available preventive vaccines, present second generation candidates, and discuss the progress of developing therapeutic HPV vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams M, Borysiewicz L, Fiander A, Man S, Jasani B, Navabi H, Lipetz C, Evans AS, Mason M (2001) Clinical studies of human papilloma vaccines in pre-invasive and invasive cancer. Vaccine 19:2549–2556

    Article  CAS  PubMed  Google Scholar 

  • Baldwin PJ, van der Burg SH, Boswell CM, Offringa R, Hickling JK, Dobson J, Roberts JS, Latimer JA, Moseley RP, Coleman N et al (2003) Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res 9:5205–5213

    CAS  PubMed  Google Scholar 

  • Bilu D, Sauder DN (2003) Imiquimod: modes of action. Br J Dermatol 149(Suppl 66):5–8

    PubMed  Google Scholar 

  • Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Boursnell ME et al (1996) A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 347:1523–1527

    Article  CAS  PubMed  Google Scholar 

  • Brooks G, Carroll KC, Butel JS, Morse SA, Mietzneron TA (eds) (2010) Jawetz, Melnick, & Adelberg’s Medical Microbiology, 25th edn. McGraw-Hill Medical, New York

    Google Scholar 

  • Brun JL, Dalstein V, Leveque J, Mathevet P, Raulic P, Baldauf JJ, Scholl S, Huynh B, Douvier S, Riethmuller D et al (2011) Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol 204:161–168

    Article  Google Scholar 

  • Campo MS, Roden RB (2010) Papillomavirus prophylactic vaccines: established successes, new approaches. J Virol 84:1214–1220

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, Jiang B, Goodman MT, Sibug-Saber M, Cozen W et al (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29:4294–4301

    Article  PubMed  Google Scholar 

  • Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC (2000) Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 5:557–567

    Article  CAS  PubMed  Google Scholar 

  • Chen XZ, Mao XH, Zhu KJ, Jin N, Ye J, Cen JP, Zhou Q, Cheng H (2010) Toll like receptor agonists augment HPV 11 E7-specific T cell responses by modulating monocyte-derived dendritic cells. Arch Dermatol Res 302:57–65

    Article  CAS  PubMed  Google Scholar 

  • Chuang CM, Monie A, Wu A, Hung CF (2009) Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J Biomed Sci 16:49

    Article  PubMed  Google Scholar 

  • Chuang CM, Monie A, Hung CF, Wu TC (2010) Treatment with imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. J Biomed Sci 17:32

    Article  PubMed  Google Scholar 

  • Corona Gutierrez CM, Tinoco A, Navarro T, Contreras ML, Cortes RR, Calzado P, Reyes L, Posternak R, Morosoli G, Verde ML et al (2004) Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum Gene Ther 15:421–431

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Huang L (2005) Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: therapeutic effect against cervical cancer. Cancer Immunol Immunother 54:1180–1190

    Article  CAS  PubMed  Google Scholar 

  • Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL, Kitchener HC (2010) Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer 102:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Daftarian P, Mansour M, Benoit AC, Pohajdak B, Hoskin DW, Brown RG, Kast WM (2006) Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion. Vaccine 24:5235–5244

    Article  CAS  PubMed  Google Scholar 

  • Davidson EJ, Boswell CM, Sehr P, Pawlita M, Tomlinson AE, McVey RJ, Dobson J, Roberts JS, Hickling J, Kitchener HC et al (2003) Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res 63:6032–6041

    CAS  PubMed  Google Scholar 

  • Derkay CS, Smith RJ, McClay J, van Burik JA, Wiatrak BJ, Arnold J, Berger B, Neefe JR (2005) HspE7 treatment of pediatric recurrent respiratory papillomatosis: final results of an open-label trial. Ann Otol Rhinol Laryngol 114:730–737

    PubMed  Google Scholar 

  • Dillner J, Kjaer SK, Wheeler CM, Sigurdsson K, Iversen OE, Hernandez-Avila M, Perez G, Brown DR, Koutsky LA, Tay EH et al (2010) Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. BMJ 341:c3493

    Article  PubMed  Google Scholar 

  • DiMaio D, Mattoon D (2001) Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene 20:7866–7873

    Article  CAS  PubMed  Google Scholar 

  • Echelman D, Feldman S (2012) Management of cervical precancers: a global perspective. Hematol Oncol Clin North Am 26:31–44

    Google Scholar 

  • Einstein MH, Kadish AS, Burk RD, Kim MY, Wadler S, Streicher H, Goldberg GL, Runowicz CD (2007) Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol 106:453–460

    Article  CAS  PubMed  Google Scholar 

  • Einstein MH, Baron M, Levin MJ, Chatterjee A, Edwards RP, Zepp F, Carletti I, Dessy FJ, Trofa AF, Schuind A et al (2009) Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin 5:705–719

    Article  CAS  PubMed  Google Scholar 

  • Einstein MH, Baron M, Levin MJ, Chatterjee A, Fox B, Scholar S, Rosen J, Chakhtoura N, Meric D, Dessy FJ et al (2011) Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: Follow-up from Months 12–24 in a Phase III randomized study of healthy women aged 18–45 years. Hum Vaccin 7:1343–1358

    Article  CAS  PubMed  Google Scholar 

  • Embers ME, Budgeon LR, Pickel M, Christensen ND (2002) Protective immunity to rabbit oral and cutaneous papillomaviruses by immunization with short peptides of L2, the minor capsid protein. J Virol 76:9798–9805

    Article  CAS  PubMed  Google Scholar 

  • Fraillery D, Baud D, Pang SY, Schiller J, Bobst M, Zosso N, Ponci F, Nardelli-Haefliger D (2007) Salmonella enterica serovar Typhi Ty21a expressing human papillomavirus type 16 L1 as a potential live vaccine against cervical cancer and typhoid fever. Clin Vaccine Immunol 14:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Frazer IH, Quinn M, Nicklin JL, Tan J, Perrin LC, Ng P, O’Connor VM, White O, Wendt N, Martin J et al (2004) Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine 23:172–181

    Article  CAS  PubMed  Google Scholar 

  • Gambhira R, Karanam B, Jagu S, Roberts JN, Buck CB, Bossis I, Alphs H, Culp T, Christensen ND, Roden RB (2007) A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J Virol 81:13927–13931

    Article  CAS  PubMed  Google Scholar 

  • Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, Magill M, Silverman M, Urban RG, Hedley ML et al (2004) ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 103:317–326

    Article  CAS  PubMed  Google Scholar 

  • Gaukroger JM, Chandrachud LM, O’Neil BW, Grindlay GJ, Knowles G, Campo MS (1996) Vaccination of cattle with bovine papillomavirus type 4 L2 elicits the production of virus-neutralizing antibodies. J Gen Virol 77:1577–1583

    Article  CAS  PubMed  Google Scholar 

  • Giuliano AR, Palefsky JM, Goldstone S, Moreira ED Jr, Penny ME, Aranda C, Vardas E, Moi H, Jessen H, Hillman R et al (2011) Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med 364:401–411

    Article  CAS  PubMed  Google Scholar 

  • Goldstone SE, Palefsky JM, Winnett MT, Neefe JR (2002) Activity of HspE7, a novel immunotherapy, in patients with anogenital warts. Dis Colon Rectum 45:502–507

    Article  PubMed  Google Scholar 

  • Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y (2001) Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167:6471–6479

    CAS  PubMed  Google Scholar 

  • Hoffmann C, Stanke J, Kaufmann AM, Loddenkemper C, Schneider A, Cichon G (2010) Combining T-cell vaccination and application of agonistic anti-GITR mAb (DTA-1) induces complete eradication of HPV oncogene expressing tumors in mice. J Immunother 33:136–145

    Article  CAS  PubMed  Google Scholar 

  • Hung CF, Wu TC (2003) Improving DNA vaccine potency via modification of professional antigen presenting cells. Curr Opin Mol Ther 5:20–24

    Article  CAS  PubMed  Google Scholar 

  • Hussain SF, Paterson Y (2004) CD4+CD25+ regulatory T cells that secrete TGFbeta and IL-10 are preferentially induced by a vaccine vector. J Immunother 27:339–346

    Article  CAS  PubMed  Google Scholar 

  • Inovio (2012) A study of VGX-3100 DNA vaccine with electroporation in patients with cervical intraepithelial neoplasia grade 2/3 or 3 (HPV-003). http://clinicaltrials.gov/ct2/show/NCT01304524?term=NCT01304524&rank=1

  • Jagu S, Karanam B, Gambhira R, Chivukula SV, Chaganti RJ, Lowy DR, Schiller JT, Roden RB (2009) Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines. J Natl Cancer Inst 101:782–792

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  • Kang TH, Monie A, Wu LS, Pang X, Hung CF, Wu TC (2010) Enhancement of protein vaccine potency by in vivo electroporation mediated intramuscular injection. Vaccine 29:1082–1089

    Article  PubMed  Google Scholar 

  • Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, Adams M, Onon TS, Bauknecht T, Wagner U et al (2002) Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 8:3676–3685

    CAS  PubMed  Google Scholar 

  • Kawana K, Yoshikawa H, Taketani Y, Yoshiike K, Kanda T (1999) Common neutralization epitope in minor capsid protein L2 of human papillomavirus types 16 and 6. J Virol 73:6188–6190

    CAS  PubMed  Google Scholar 

  • Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ et al (2008) Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 14:169–177

    Article  CAS  PubMed  Google Scholar 

  • Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW et al (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361:1838–1847

    Article  CAS  PubMed  Google Scholar 

  • Kondo K, Ochi H, Matsumoto T, Yoshikawa H, Kanda T (2008) Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes. J Med Virol 80:841–846

    Article  CAS  PubMed  Google Scholar 

  • Kwak K, Yemelyanova A, Roden RB (2010) Prevention of cancer by prophylactic human papillomavirus vaccines. Curr Opin Immunol 23:244–251

    Article  PubMed  Google Scholar 

  • Lehtinen M, Paavonen J, Wheeler CM, Jaisamrarn U, Garland SM, Castellsague X, Skinner SR, Apter D, Naud P, Salmeron J et al (2012) Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol 13:89–99

    Article  CAS  PubMed  Google Scholar 

  • Li M, Cripe TP, Estes PA, Lyon MK, Rose RC, Garcea RL (1997) Expression of the human papillomavirus type 11 L1 capsid protein in Escherichia coli: characterization of protein domains involved in DNA binding and capsid assembly. J Virol 71:2988–2995

    CAS  PubMed  Google Scholar 

  • Lin K, Roosinovich E, Ma B, Hung CF, Wu TC (2010) Therapeutic HPV DNA vaccines. Immunol Res 47:86–112

    Article  CAS  PubMed  Google Scholar 

  • Lowy DR, Schiller JT (2012) Reducing HPV-associated cancer globally. Cancer Prev Res (Phila) 5:18–23

    Article  Google Scholar 

  • Maciag PC, Radulovic S, Rothman J (2009) The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27:3975–3983

    Article  CAS  PubMed  Google Scholar 

  • Matijevic M, Hedley ML, Urban RG, Chicz RM, Lajoie C, Luby TM (2011) Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell Immunol 270:62–69

    Article  CAS  PubMed  Google Scholar 

  • Merck (2011) Phase III clinical trial: broad spectrum HPV (Human Papillomavirus) vaccine study in 16-to 26-year-old women (V503-001 AM2)

    Google Scholar 

  • Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, Kast WM, Fascio G, Marty V, Weber J (2000) A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 6:3406–3416

    CAS  PubMed  Google Scholar 

  • NCI (2012a) A Phase I efficacy and safety study of HPV16-specific therapeutic DNA-vaccinia vaccination in combination with topical imiquimod, in patients with HPV16+ high grade cervical dysplasia (CIN3). http://www.cancer.gov/clinicaltrials/search/view?cdrid=617261&version=HealthProfessional&protocolsearchid=10105493

  • NCI (2012b) Phase II study of live-attenuated listeria monocytogenes cancer vaccine ADXS11-001 in patients with persistent or recurrent squamous cell or non-squamous cell carcinoma of the cervix. http://cancer.gov/clinicaltrials/search/view?cdrid=691288&version=healthprofessional

  • NCI (2012c) A pilot study of pnGVL4a-CRT/E7 (Detox) for the treatment of patients with HPV16+ cervical intraepithelial neoplasia 2/3 (CIN2/3). http://clinicaltrials.gov/ct2/show/NCT00988559?term=trimble&rank=1

  • NCI (2012d) A randomized, single blind, placebo controlled phase 2 study to assess the safety of ADXS11-001 for the treatment of cervical intraepithelial neoplasia grade 2/3. http://clinicaltrials.gov/ct2/show/NCT01116245

  • Nurkkala M, Wassen L, Nordstrom I, Gustavsson I, Slavica L, Josefsson A, Eriksson K (2010) Conjugation of HPV16 E7 to cholera toxin enhances the HPV-specific T-cell recall responses to pulsed dendritic cells in vitro in women with cervical dysplasia. Vaccine 28:5828–5836

    Article  CAS  PubMed  Google Scholar 

  • Pastrana DV, Gambhira R, Buck CB, Pang YY, Thompson CD, Culp TD, Christensen ND, Lowy DR, Schiller JT, Roden RB (2005) Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2. Virology 337:365–372

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Wang XH, Cui HL, Cheung YK, Hu MH, Zhu SG, Xie Y (2005) Human papillomavirus type 16 E7 peptide(38–61) linked with an immunoglobulin G fragment provides protective immunity in mice. Gynecol Oncol 96:475–483

    Article  CAS  PubMed  Google Scholar 

  • Radulovic S, Brankovic-Magic M, Malisic E, Jankovic R, Dobricic J, Plesinac-Karapandzic V, Maciag PC, Rothman J (2009) Therapeutic cancer vaccines in cervical cancer: phase I study of Lovaxin-C. J Buon 14(Suppl 1):S165–S168

    PubMed  Google Scholar 

  • Roden R, Wu TC (2006) How will HPV vaccines affect cervical cancer? Nat Rev Cancer 6:753–763

    Article  CAS  PubMed  Google Scholar 

  • Roden RB, Yutzy WHt, Fallon R, Inglis S, Lowy DR, Schiller JT (2000) Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology 270:254–257

    Google Scholar 

  • Roman LD, Wilczynski S, Muderspach LI, Burnett AF, O’Meara A, Brinkman JA, Kast WM, Facio G, Felix JC, Aldana M et al (2007) A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia. Gynecol Oncol 106:558–566

    Article  CAS  PubMed  Google Scholar 

  • Romanowski B, Schwarz TF, Ferguson LM, Peters K, Dionne M, Schulze K, Ramjattan B, Hillemanns P, Catteau G, Dobbelaere K et al (2011) Immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose schedule compared to the licensed 3-dose schedule: Results from a randomized study. Hum Vaccin 7:1374–1386

    Article  CAS  PubMed  Google Scholar 

  • Rose RC, White WI, Li M, Suzich JA, Lane C, Garcea RL (1998) Human papillomavirus type 11 recombinant L1 capsomeres induce virus-neutralizing antibodies. J Virol 72:6151–6154

    CAS  PubMed  Google Scholar 

  • Santin AD, Bellone S, Roman JJ, Burnett A, Cannon MJ, Pecorelli S (2005) Therapeutic vaccines for cervical cancer: dendritic cell-based immunotherapy. Curr Pharm Des 11:3485–3500

    Article  CAS  PubMed  Google Scholar 

  • Schellenbacher C, Roden R, Kirnbauer R (2009) Chimeric L1–L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J Virol 83:10085–10095

    Article  CAS  PubMed  Google Scholar 

  • Sewell DA, Shahabi V, Gunn GR 3rd, Pan ZK, Dominiecki ME, Paterson Y (2004) Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res 64:8821–8825

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Elpek KG, Yolcu ES, Schabowsky RH, Zhao H, Bandura-Morgan L, Shirwan H (2009) Costimulation as a platform for the development of vaccines: a peptide-based vaccine containing a novel form of 4–1BB ligand eradicates established tumors. Cancer Res 69:4319–4326

    Article  CAS  PubMed  Google Scholar 

  • Sheets EE, Urban RG, Crum CP, Hedley ML, Politch JA, Gold MA, Muderspach LI, Cole GA, Crowley-Nowick PA (2003) Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol 188:916–926

    Article  CAS  PubMed  Google Scholar 

  • Simard EP, Ward EM, Siegel R, Jemal A (2012) Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin. doi:10.3322/caac.20141

    PubMed  Google Scholar 

  • Souders NC, Sewell DA, Pan ZK, Hussain SF, Rodriguez A, Wallecha A, Paterson Y (2007) Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun 7:2–14

    PubMed  Google Scholar 

  • Trimble CL, Frazer IH (2009) Development of therapeutic HPV vaccines. Lancet Oncol 10:975–980

    Article  CAS  PubMed  Google Scholar 

  • Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, Pardoll D, Wu TC (2009) A phase I trial of a human papillomavirus DNA vaccine for HPV16 + cervical intraepithelial neoplasia 2/3. Clin Cancer Res 15:361–367

    Article  CAS  PubMed  Google Scholar 

  • Tseng CW, Hung CF, Alvarez RD, Trimble C, Huh WK, Kim D, Chuang CM, Lin CT, Tsai YC, He L et al (2008) Pretreatment with cisplatin enhances E7-specific CD8 + T-Cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res 14:3185–3192

    Article  CAS  PubMed  Google Scholar 

  • Tseng CW, Trimble C, Zeng Q, Monie A, Alvarez RD, Huh WK, Hoory T, Wang MC, Hung CF, Wu TC (2009) Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts. Cancer Immunol Immunother 58:737–748

    Article  CAS  PubMed  Google Scholar 

  • Tumban E, Peabody J, Peabody DS, Chackerian B (2011) A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PLoS One 6:e23310

    Google Scholar 

  • Van Doorslaer K, Reimers LL, Studentsov YY, Einstein MH, Burk RD (2009) Serological response to an HPV16 E7 based therapeutic vaccine in women with high-grade cervical dysplasia. Gynecol Oncol 116(2):208–212

    Article  PubMed  Google Scholar 

  • Wang X, Santin AD, Bellone S, Gupta S, Nakagawa M (2009) A novel CD4 T-cell epitope described from one of the cervical cancer patients vaccinated with HPV 16 or 18 E7-pulsed dendritic cells. Cancer Immunol Immunother 58:301–308

    Article  CAS  PubMed  Google Scholar 

  • Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Berends-van der Meer DM, Drijfhout JW, Valentijn AR, Wafelman AR, Oostendorp J et al (2008) Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 14:178–187

    Article  CAS  PubMed  Google Scholar 

  • Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, Stynenbosch LF, Vloon AP, Ramwadhdoebe TH, Piersma SJ et al (2010) Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci U S A 107:11895–11899

    Google Scholar 

  • Wheeler CM, Castellsague X, Garland SM, Szarewski A, Paavonen J, Naud P, Salmeron J, Chow SN, Apter D, Kitchener H et al (2012) Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol 13:100–110

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Monie A, Pang X, Hung CF, Wu TC (2010) Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation. J Biomed Sci 17:88

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Chen WC, Liu Z, Huang L (2010) Bryostatin-I: A dendritic cell stimulator for chemokines induction and a promising adjuvant for a peptide based cancer vaccine. Cytokine 52:238–244

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Tsai YC, Monie A, Hung CF, Wu TC (2010) Carrageenan as an adjuvant to enhance peptide-based vaccine potency. Vaccine 28:5212–5219

    Article  CAS  PubMed  Google Scholar 

  • zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    Article  CAS  PubMed  Google Scholar 

  • Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, van der Burg SH, Melief CJ (2002) Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 169:350–358

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shiwen Peng for helpful discussion. This review is not intended to be an encyclopedic one, and the authors apologize to those not cited. This work was funded by the National Institutes of Health Cervical Cancer SPORE and Head and Neck Cancer SPORE (P50 CA098252 and P50 CA96784-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-C. Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tran, N.P., Hung, CF., Roden, R., Wu, TC. (2014). Control of HPV Infection and Related Cancer Through Vaccination. In: Chang, M., Jeang, KT. (eds) Viruses and Human Cancer. Recent Results in Cancer Research, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38965-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38965-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38964-1

  • Online ISBN: 978-3-642-38965-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics