Skip to main content

The Adaptive Immune Response to Respiratory Syncytial Virus

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 372))

Abstract

Respiratory syncytial virus (RSV) causes severe respiratory disease in children, the elderly and immunocompromised individuals. The combined actions of CD4 and CD8 T cells play a critical role in terminating an acute RSV infection whereas antibodies can provide protection from re-infection. Despite eliciting an immune response that mediates clearance of the virus, immunity to the virus appears to wane over time and individuals remain susceptible to reinfection with RSV throughout their lifetime. The ineffectiveness of the natural infection to induce long-term immunity has hampered vaccine efforts and there is currently no licensed RSV vaccine. In this review, we summarize our current understanding of the adaptive immune response to RSV and its contribution to disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Awomoyi AA, Rallabhandi P, Pollin TI, Lorenz E, Sztein MB, Boukhvalova MS, Hemming VG, Blanco JC, Vogel SN (2007) Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J Immunol 179(5):3171–3177 179/5/3171 [pii]

    CAS  PubMed  Google Scholar 

  • Beyer M, Bartz H, Horner K, Doths S, Koerner-Rettberg C, Schwarze J (2004) Sustained increases in numbers of pulmonary dendritic cells after respiratory syncytial virus infection. J Allergy Clin Immunol 113(1):127–133

    Article  PubMed  Google Scholar 

  • Boogaard I, van Oosten M, van Rijt LS, Muskens F, Kimman TG, Lambrecht BN, Buisman AM (2007) Respiratory syncytial virus differentially activates murine myeloid and plasmacytoid dendritic cells. Immunology 122(1):65–72. doi:10.1111/j.1365-2567.2007.02613.x

    Article  CAS  PubMed  Google Scholar 

  • Braciale TJ, Sun J, Kim TS (2012) Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol 12(4):295–305. doi:10.1038/nri3166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brandenburg AH, Groen J, van Steensel-Moll HA, Claas EC, Rothbarth PH, Neijens HJ, Osterhaus AD (1997) Respiratory syncytial virus specific serum antibodies in infants under six months of age: limited serological response upon infection. J Med Virol 52(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg AH, Kleinjan A, Land BV, Moll HA, Timmerman HH, de Swart RL, Neijens HJ, Fokkens W, Osterhaus ADME (2000) Type 1-like immune response is found in children with respiratory syncytial virus infection regardless of clinical severity. J Med Virol 62(2):267–277

    Article  CAS  PubMed  Google Scholar 

  • Brincks EL, Katewa A, Kucaba TA, Griffith TS, Legge KL (2008) CD8 T cells utilize TRAIL to control influenza virus infection. J Immunol 181(7):4918–4925 181/7/4918 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castilow EM, Varga SM (2008) Overcoming T cell-mediated immunopathology to achieve safe RSV vaccination. Future Virol 3(5):445–454. doi:10.2217/17460794.3.5.445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang J, Braciale TJ (2002) Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract. Nat Med 8(1):54–60. doi:10.1038/nm0102-54

    Article  CAS  PubMed  Google Scholar 

  • de Bree GJ, Daniels H, Schilfgaarde M, Jansen HM, Out TA, van Lier RA, Jonkers RE (2007) Characterization of CD4+ memory T cell responses directed against common respiratory pathogens in peripheral blood and lung. J Infect Dis 195(11):1718–1725. doi:10.1086/517612

    Article  PubMed  Google Scholar 

  • de Graaff PM, de Jong EC, van Capel TM, van Dijk ME, Roholl PJ, Boes J, Luytjes W, Kimpen JL, van Bleek GM (2005) Respiratory syncytial virus infection of monocyte-derived dendritic cells decreases their capacity to activate CD4 T cells. J Immunol 175(9):5904–5911

    PubMed  Google Scholar 

  • DeVincenzo JP, Wilkinson T, Vaishnaw A, Cehelsky J, Meyers R, Nochur S, Harrison L, Meeking P, Mann A, Moane E, Oxford J, Pareek R, Moore R, Walsh E, Studholme R, Dorsett P, Alvarez R, Lambkin-Williams R (2010) Viral load drives disease in humans experimentally infected with respiratory syncytial virus. Am J Respir Crit Care Med 182(10):1305–1314. doi:10.1164/rccm.201002-0221OC

    Article  CAS  PubMed  Google Scholar 

  • El Saleeby CM, Bush AJ, Harrison LM, Aitken JA, Devincenzo JP (2011) Respiratory syncytial virus load, viral dynamics, and disease severity in previously healthy naturally infected children. J Infect Dis 204(7):996–1002. doi:10.1093/infdis/jir494

    Article  PubMed  Google Scholar 

  • Everard ML, Swarbrick A, Wrightham M, McIntyre J, Dunkley C, James PD, Sewell HF, Milner AD (1994) Analysis of cells obtained by bronchial lavage of infants with respiratory syncytial virus infection. Arch Dis Child 71(5):428–432

    Article  CAS  PubMed  Google Scholar 

  • Falsey AR, Walsh EE (1998) Relationship of serum antibody to risk of respiratory syncytial virus infection in elderly adults. J Infect Dis 177(2):463–466

    Article  CAS  PubMed  Google Scholar 

  • Falsey AR, Singh HK, Walsh EE (2006) Serum antibody decay in adults following natural respiratory syncytial virus infection. J Med Virol 78(11):1493–1497. doi:10.1002/jmv.20724

    Article  CAS  PubMed  Google Scholar 

  • Fishaut M, Tubergen D, McIntosh K (1980) Cellular response to respiratory viruses with particular reference to children with disorders of cell-mediated immunity. J Pediatr 96(2):179–186

    Article  CAS  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336. doi:10.1038/ni904

    Article  CAS  PubMed  Google Scholar 

  • Fulton RB, Meyerholz DK, Varga SM (2010) Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J Immunol 185(4):2382–2392. doi:10.4049/jimmunol.1000423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garofalo RP, Patti J, Hintz KA, Hill V, Ogra PL, Welliver RC (2001) Macrophage inflammatory protein-1α (not T helper type 2 cytokines) is associated with severe forms of respiratory syncytial virus bronchiolitis. J Infect Dis 184(4):393–399. doi:10.1086/322788

    Article  CAS  PubMed  Google Scholar 

  • Graham BS, Bunton LA, Rowland J, Wright PF, Karzon DT (1991a) Respiratory syncytial virus infection in anti-μ-treated mice. J Virol 65(9):4936–4942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham BS, Bunton LA, Wright PF, Karzon DT (1991b) Reinfection of mice with respiratory syncytial virus. J Med Virol 34(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Graham BS, Bunton LA, Wright PF, Karzon DT (1991c) Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J Clin Invest 88(3):1026–1033. doi:10.1172/JCI115362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall CB, Powell KR, MacDonald NE, Gala CL, Menegus ME, Suffin SC, Cohen HJ (1986) Respiratory syncytial viral infection in children with compromised immune function. N Engl J Med 315(2):77–81. doi:10.1056/NEJM198607103150201

    Article  CAS  PubMed  Google Scholar 

  • Harcourt J, Alvarez R, Jones LP, Henderson C, Anderson LJ, Tripp RA (2006) Respiratory syncytial virus G protein and G protein CX3C motif adversely affect CX3CR1+ T cell responses. J Immunol 176(3):1600–1608 176/3/1600 [pii]

    CAS  PubMed  Google Scholar 

  • Heidema J, Lukens MV, van Maren WW, van Dijk ME, Otten HG, van Vught AJ, van der Werff DB, van Gestel SJ, Semple MG, Smyth RL, Kimpen JL, van Bleek GM (2007) CD8+ T cell responses in bronchoalveolar lavage fluid and peripheral blood mononuclear cells of infants with severe primary respiratory syncytial virus infections. J Immunol 179(12):8410–8417

    Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. doi:10.1126/science.1079490

    Article  CAS  PubMed  Google Scholar 

  • Hunt DW, Huppertz HI, Jiang HJ, Petty RE (1994) Studies of human cord blood dendritic cells: evidence for functional immaturity. Blood 84(12):4333–4343

    CAS  PubMed  Google Scholar 

  • Johnson JE, Gonzales RA, Olson SJ, Wright PF, Graham BS (2007) The histopathology of fatal untreated human respiratory syncytial virus infection. Mod Pathol 20(1):108–119. doi:10.1038/modpathol.3800725

    Article  CAS  PubMed  Google Scholar 

  • Johnson TR, Johnson CN, Corbett KS, Edwards GC, Graham BS (2011) Primary human mDC1, mDC2, and pDC dendritic cells are differentially infected and activated by respiratory syncytial virus. PLoS ONE 6(1):e16458. doi:10.1371/journal.pone.0016458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kallal LE, Hartigan AJ, Hogaboam CM, Schaller MA, Lukacs NW (2010) Inefficient lymph node sensitization during respiratory viral infection promotes IL-17-mediated lung pathology. J Immunol 185(7):4137–4147. doi:10.4049/jimmunol.1000677

    Article  CAS  PubMed  Google Scholar 

  • Kasel JA, Walsh EE, Frank AL, Baxter BD, Taber LH, Glezen WP (1987) Relation of serum antibody to glycoproteins of respiratory syncytial virus with immunity to infection in children. Viral Immunol 1(3):199–205

    Article  PubMed  Google Scholar 

  • Kotelkin A, Belyakov IM, Yang L, Berzofsky JA, Collins PL, Bukreyev A (2006) The NS2 protein of human respiratory syncytial virus suppresses the cytotoxic T-cell response as a consequence of suppressing the type I interferon response. J Virol 80(12):5958–5967. doi:10.1128/JVI.00181-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1(5):398–401. doi:10.1038/80833

    Article  CAS  PubMed  Google Scholar 

  • Le Nouen C, Hillyer P, Munir S, Winter CC, McCarty T, Bukreyev A, Collins PL, Rabin RL, Buchholz UJ (2010) Effects of human respiratory syncytial virus, metapneumovirus, parainfluenza virus 3 and influenza virus on CD4+ T cell activation by dendritic cells. PLoS ONE 5(11):e15017. doi:10.1371/journal.pone.0015017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le Nouen C, Hillyer P, Winter CC, McCarty T, Rabin RL, Collins PL, Buchholz UJ (2011) Low CCR7-mediated migration of human monocyte derived dendritic cells in response to human respiratory syncytial virus and human metapneumovirus. PLoS Pathog 7(6):e1002105. doi:10.1371/journal.ppat.1002105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DC, Harker JA, Tregoning JS, Atabani SF, Johansson C, Schwarze J, Openshaw PJ (2010) CD25+ natural regulatory T cells are critical in limiting innate and adaptive immunity and resolving disease following respiratory syncytial virus infection. J Virol 84(17):8790–8798. doi:10.1128/JVI.00796-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Legg JP, Hussain IR, Warner JA, Johnston SL, Warner JO (2003) Type 1 and type 2 cytokine imbalance in acute respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 168(6):633–639. doi:10.1164/rccm.200210-1148OC

    Article  PubMed  Google Scholar 

  • Liu J, Ruckwardt TJ, Chen M, Johnson TR, Graham BS (2009) Characterization of respiratory syncytial virus M- and M2-specific CD4 T cells in a murine model. J Virol 83(10):4934–4941. doi:10.1128/JVI.02140-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney NP, Schuijs M, O’Garra A, Johansson C, Openshaw PJ (2012a) IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE 7(2):e32371. doi:10.1371/journal.pone.0032371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster KE, Sprent J, Culley FJ, Johansson C, Openshaw PJ (2012b) Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol 5(2):161–172. doi:10.1038/mi.2011.62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lukacs NW, Smit JJ, Mukherjee S, Morris SB, Nunez G, Lindell DM (2010) Respiratory virus-induced TLR7 activation controls IL-17-associated increased mucus via IL-23 regulation. J Immunol 185(4):2231–2239. doi:10.4049/jimmunol.1000733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lukens MV, Kruijsen D, Coenjaerts FE, Kimpen JL, van Bleek GM (2009) Respiratory syncytial virus-induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node. J Virol 83(14):7235–7243. doi:10.1128/JVI.00452-09 JVI.00452-09 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lukens MV, van de Pol AC, Coenjaerts FE, Jansen NJ, Kamp VM, Kimpen JL, Rossen JW, Ulfman LH, Tacke CE, Viveen MC, Koenderman L, Wolfs TF, van Bleek GM (2010) A systemic neutrophil response precedes robust CD8+ T-cell activation during natural respiratory syncytial virus infection in infants. J Virol 84(5):2374–2383. doi:10.1128/JVI.01807-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandelberg A, Tal G, Naugolny L, Cesar K, Oron A, Houri S, Gilad E, Somekh E (2006) Lipopolysaccharide hyporesponsiveness as a risk factor for intensive care unit hospitalization in infants with respiratory syncitial virus bronchiolitis. Clin Exp Immunol 144(1):48–52. doi:10.1111/j.1365-2249.2006.03030.x CEI3030 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mbawuike IN, Wells J, Byrd R, Cron SG, Glezen WP, Piedra PA (2001) HLA-restricted CD8+ cytotoxic T lymphocyte, interferon-γ, and interleukin-4 responses to respiratory syncytial virus infection in infants and children. J Infect Dis 183(5):687–696. doi:10.1086/318815

    Article  CAS  PubMed  Google Scholar 

  • Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, Kubota M, Turner D, Diamond JM, Goldrath AW, Farber DL, Collman RG, Wherry EJ, Artis D (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12(11):1045–1054. doi:10.1031/ni.2131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee S, Lindell DM, Berlin AA, Morris SB, Shanley TP, Hershenson MB, Lukacs NW (2011) IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease. Am J Pathol 179(1):248–258. doi:10.1016/j.ajpath.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  • Murphy BR, Graham BS, Prince GA, Walsh EE, Chanock RM, Karzon DT, Wright PF (1986) Serum and nasal-wash immunoglobulin G and a antibody response of infants and children to respiratory syncytial virus F and G glycoproteins following primary infection. J Clin Microbiol 23(6):1009–1014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie AN (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–1370. doi:10.1038/nature08900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ostler T, Davidson W, Ehl S (2002) Virus clearance and immunopathology by CD8+ T cells during infection with respiratory syncytial virus are mediated by IFN-gamma. Eur J Immunol 32(8):2117–2123. doi:10.1002/1521-4141(200208)32:8<2117:AID-IMMU2117>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  • Puthothu B, Forster J, Heinzmann A, Krueger M (2006) TLR-4 and CD14 polymorphisms in respiratory syncytial virus associated disease. Dis Markers 22(5–6):303–308

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy M, Shi L, Varga SM, Barik S, Behlke MA, Look DC (2006) Respiratory syncytial virus nonstructural protein 2 specifically inhibits type I interferon signal transduction. Virology 344(2):328–339. doi:10.1016/j.virol.2005.09.009

    Article  CAS  PubMed  Google Scholar 

  • Roman M, Calhoun WJ, Hinton KL, Avendano LF, Simon V, Escobar AM, Gaggero A, Diaz PV (1997) Respiratory syncytial virus infection in infants is associated with predominant Th-2-like response. Am J Respir Crit Care Med 156(1):190–195

    Article  CAS  PubMed  Google Scholar 

  • Ruckwardt TJ, Bonaparte KL, Nason MC, Graham BS (2009) Regulatory T cells promote early influx of CD8+ T cells in the lungs of respiratory syncytial virus-infected mice and diminish immunodominance disparities. J Virol 83(7):3019–3028. doi:10.1128/JVI.00036-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rutigliano JA, Graham BS (2004) Prolonged production of TNF-α exacerbates illness during respiratory syncytial virus infection. J Immunol 173(5):3408–3417 173/5/3408 [pii]

    CAS  PubMed  Google Scholar 

  • Singleton R, Etchart N, Hou S, Hyland L (2003) Inability to evoke a long-lasting protective immune response to respiratory syncytial virus infection in mice correlates with ineffective nasal antibody responses. J Virol 77(21):11303–11311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smit JJ, Rudd BD, Lukacs NW (2006) Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J Exp Med 203(5):1153–1159. doi:10.1084/jem.20052359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smit JJ, Lindell DM, Boon L, Kool M, Lambrecht BN, Lukacs NW (2008) The balance between plasmacytoid DC versus conventional DC determines pulmonary immunity to virus infections. PLoS ONE 3(3):e1720. doi:10.1371/journal.pone.0001720

    Article  PubMed Central  PubMed  Google Scholar 

  • Spann KM, Tran KC, Chi B, Rabin RL, Collins PL (2004) Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages. J Virol 78(8):4363–4369 (corrected)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun J, Cardani A, Sharma AK, Laubach VE, Jack RS, Muller W, Braciale TJ (2011a) Autocrine regulation of pulmonary inflammation by effector T-cell derived IL-10 during infection with respiratory syncytial virus. PLoS Pathog 7(8):e1002173. doi:10.1371/journal.ppat.1002173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun J, Dodd H, Moser EK, Sharma R, Braciale TJ (2011b) CD4+ T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs. Nat Immunol 12(4):327–334. doi:10.1038/ni.1996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tal G, Mandelberg A, Dalal I, Cesar K, Somekh E, Tal A, Oron A, Itskovich S, Ballin A, Houri S, Beigelman A, Lider O, Rechavi G, Amariglio N (2004) Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis 189(11):2057–2063. doi:10.1086/420830 JID31682 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Tekkanat KK, Maassab HF, Cho DS, Lai JJ, John A, Berlin A, Kaplan MH, Lukacs NW (2001) IL-13-induced airway hyperreactivity during respiratory syncytial virus infection is STAT6 dependent. J Immunol 166(5):3542–3548

    CAS  PubMed  Google Scholar 

  • Tripp RA, Jones LP, Haynes LM, Zheng H, Murphy PM, Anderson LJ (2001) CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat Immunol 2(8):732–738. doi:10.1038/90675

    Article  CAS  PubMed  Google Scholar 

  • Tulic MK, Hurrelbrink RJ, Prele CM, Laing IA, Upham JW, Le Souef P, Sly PD, Holt PG (2007) TLR4 polymorphisms mediate impaired responses to respiratory syncytial virus and lipopolysaccharide. J Immunol 179(1):132–140 179/1/132 [pii]

    CAS  PubMed  Google Scholar 

  • Walsh EE, Falsey AR (2004) Humoral and mucosal immunity in protection from natural respiratory syncytial virus infection in adults. J Infect Dis 190(2):373–378. doi:10.1086/421524

    Article  PubMed  Google Scholar 

  • Wang H, Peters N, Laza-Stanca V, Nawroly N, Johnston SL, Schwarze J (2006a) Local CD11c+ MHC class II precursors generate lung dendritic cells during respiratory viral infection, but are depleted in the process. J Immunol 177(4):2536–2542

    CAS  PubMed  Google Scholar 

  • Wang H, Peters N, Schwarze J (2006b) Plasmacytoid dendritic cells limit viral replication, pulmonary inflammation, and airway hyperresponsiveness in respiratory syncytial virus infection. J Immunol 177(9):6263–6270

    CAS  PubMed  Google Scholar 

  • Weiss KA, Christiaansen AF, Fulton RB, Meyerholz DK, Varga SM (2011) Multiple CD4+ T cell subsets produce immunomodulatory IL-10 during respiratory syncytial virus infection. J Immunol 187(6):3145–3154. doi:10.4049/jimmunol.1100764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welliver TP, Garofalo RP, Hosakote Y, Hintz KH, Avendano L, Sanchez K, Velozo L, Jafri H, Chavez-Bueno S, Ogra PL, McKinney L, Reed JL, Welliver RC Sr (2007) Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J Infect Dis 195(8):1126–1136. doi:10.1086/512615

    Article  CAS  PubMed  Google Scholar 

  • Welliver TP, Reed JL, Welliver RC Sr (2008) Respiratory syncytial virus and influenza virus infections: observations from tissues of fatal infant cases. Pediatr Infect Dis J 27(10 Suppl):S92–S96. doi:10.1097/INF.0b013e318168b706

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Varga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varga, S.M., Braciale, T.J. (2013). The Adaptive Immune Response to Respiratory Syncytial Virus. In: Anderson, L., Graham, B. (eds) Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Current Topics in Microbiology and Immunology, vol 372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38919-1_8

Download citation

Publish with us

Policies and ethics