Skip to main content

Innate Immune Responses to Respiratory Syncytial Virus Infection

  • Chapter
  • First Online:
Book cover Challenges and Opportunities for Respiratory Syncytial Virus Vaccines

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 372))

Abstract

The innate immune response has a critical role in the initial stages of respiratory syncytial virus (RSV) infection and provides important instructional control that determines the direction of the acquired immune response and the severity of subsequent disease. Contributions to innate immunity include responses initiated in epithelial cells, dendritic cells, and macrophages. The initiation and the intensity of the response depends upon the recognition of pathogen-associated molecular patterns (PAMPs) that activate various pattern recognition receptors (PRRs) such as toll-like receptors (TLR), RIG-I–like receptors (RLR), and NOD-like receptors (NLR), that induce innate cytokines and chemokines that promote inflammation and direct the recruitment of immune cells as well as promote anti-viral responses. In this review, we summarize the results of numerous studies that have characterized the innate immune responses that contribute to the RSV-induced responses and may be important considerations for the development of efficacious vaccine strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeffner F et al (2011) Double-stranded RNA induces similar pulmonary dysfunction to respiratory syncytial virus in BALB/c mice. Am J Physiol Lung Cell Mol Physiol 301(1):L99–L109

    Article  CAS  PubMed  Google Scholar 

  • Awomoyi AA et al (2007) Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J Immunol 179(5):3171–3177

    CAS  PubMed  Google Scholar 

  • Becker S, Quay J, Soukup J (1991) Cytokine (tumor necrosis factor, IL-6, and IL-8) production by respiratory syncytial virus-infected human alveolar macrophages. J Immunol 147(12):4307–4312

    CAS  PubMed  Google Scholar 

  • Bermejo-Martin JF et al (2007) Predominance of Th2 cytokines, CXC chemokines and innate immunity mediators at the mucosal level during severe respiratory syncytial virus infection in children. Eur Cytokine Netw 18(3):162–167

    CAS  PubMed  Google Scholar 

  • Bonville CA, Rosenberg HF, Domachowske JB (1999) Macrophage inflammatory protein-1alpha and RANTES are present in nasal secretions during ongoing upper respiratory tract infection. Pediatr Allergy Immunol 10(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Cario E (2008) Innate immune signalling at intestinal mucosal surfaces: a fine line between host protection and destruction. Curr Opin Gastroenterol 24(6):725–732

    Article  CAS  PubMed  Google Scholar 

  • Collins PL, Melero JA (2011) Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 162(1–2):80–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dallman MJ, Champion B, Lamb JR (2003) Notch signalling in the peripheral immune system. Novartis Found Symp 252:268–276; discussion 276-278

    Google Scholar 

  • Deretic V (2009) Links between autophagy, innate immunity, inflammation and Crohn’s disease. Dig Dis 27(3):246–251

    Article  PubMed  Google Scholar 

  • Douville RN et al (2010) TLR4 Asp299Gly and Thr399Ile polymorphisms: no impact on human immune responsiveness to LPS or respiratory syncytial virus. PLoS ONE 5(8):e12087

    Article  PubMed Central  PubMed  Google Scholar 

  • Ehl S et al (2004) The role of toll-like receptor 4 versus interleukin-12 in immunity to respiratory syncytial virus. Eur J Immunol 34(4):1146–1153

    Article  CAS  PubMed  Google Scholar 

  • El Saleeby CM et al (2010) Surfactant protein A2 polymorphisms and disease severity in a respiratory syncytial virus-infected population. J Pediatr 156(3):409–414

    Article  PubMed  Google Scholar 

  • El-Sahly HM et al (2000) Spectrum of clinical illness in hospitalized patients with “common cold” virus infections. Clin Infect Dis 31(1):96–100

    Article  CAS  PubMed  Google Scholar 

  • Gagro A et al (2004) Increased toll-like receptor 4 expression in infants with respiratory syncytial virus bronchiolitis. Clin Exp Immunol 135(2):267–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garofalo RP et al (2001) Macrophage inflammatory protein-1alpha (not T helper type 2 cytokines) is associated with severe forms of respiratory syncytial virus bronchiolitis. J Infect Dis 184(4):393–399

    Article  CAS  PubMed  Google Scholar 

  • Graham BS, Johnson TR, Peebles RS (2000) Immune-mediated disease pathogenesis in respiratory syncytial virus infection. Immunopharmacology 48(3):237–247

    Article  CAS  PubMed  Google Scholar 

  • Groskreutz DJ et al (2006) Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells. J Immunol 176(3):1733–1740

    CAS  PubMed  Google Scholar 

  • Haeberle HA et al (2002) Respiratory syncytial virus-induced activation of nuclear factor-kappaB in the lung involves alveolar macrophages and toll-like receptor 4-dependent pathways. J Infect Dis 186(9):1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Harris J et al (2009) Th1-Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages. Vet Immunol Immunopathol 128(1–3):37–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hickling TP et al (2000) Lung surfactant protein A provides a route of entry for respiratory syncytial virus into host cells. Viral Immunol 13(1):125–135

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz JL (2011) Respiratory syncytial virus vaccine development. Expert Rev Vaccines 10(10):1415–1433

    Article  PubMed Central  PubMed  Google Scholar 

  • Hussell T, Openshaw PJ (2000) IL-12-activated NK cells reduce lung eosinophilia to the attachment protein of respiratory syncytial virus but do not enhance the severity of illness in CD8 T cell-immunodeficient conditions. J Immunol 165(12):7109–7115

    CAS  PubMed  Google Scholar 

  • John AE, Berlin AA, Lukacs NW (2003) Respiratory syncytial virus-induced CCL5/RANTES contributes to exacerbation of allergic airway inflammation. Eur J Immunol 33(6):1677–1685

    Article  CAS  PubMed  Google Scholar 

  • Johnson JE et al (2007) The histopathology of fatal untreated human respiratory syncytial virus infection. Mod Pathol 20(1):108–119

    Article  CAS  PubMed  Google Scholar 

  • Johnson TR et al (2009) TLR9 agonist, but not TLR7/8, functions as an adjuvant to diminish FI-RSV vaccine-enhanced disease, while either agonist used as therapy during primary RSV infection increases disease severity. Vaccine 27(23):3045–3052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson TR, McLellan JS, Graham BS (2012) Respiratory syncytial virus glycoprotein G interacts with DC-SIGN and L-SIGN to activate ERK1 and ERK2. J Virol 86(3):1339–1347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones BG et al (2012) Sendai virus-based RSV vaccine protects African green monkeys from RSV infection. Vaccine 30(5):959–968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurt-Jones EA et al (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1(5):398–401

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2009) Cross-presentation of tumor associated antigens through tumor-derived autophagosomes. Autophagy 5(4):576–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindell DM, Lane TE, Lukacs NW (2008) CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus infection by augmenting dendritic cell and CD8(+) T cell efficacy. Eur J Immunol 38(8):2168–2179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindell DM et al (2011) A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine-enhanced disease. PLoS ONE 6(7):e21823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ling Z, Tran KC, Teng MN (2009) Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of beta interferon transcription by interacting with RIG-I. J Virol 83(8):3734–3742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu P et al (2007) Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol 81(3):1401–1411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandelberg A et al (2006) Lipopolysaccharide hyporesponsiveness as a risk factor for intensive care unit hospitalization in infants with respiratory syncitial virus bronchiolitis. Clin Exp Immunol 144(1):48–52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mastronarde JG et al (1996) Induction of interleukin (IL)-8 gene expression by respiratory syncytial virus involves activation of nuclear factor (NF)-kappa B and NF-IL-6. J Infect Dis 174(2):262–267

    Article  CAS  PubMed  Google Scholar 

  • McGinnes LW et al (2011) Assembly and immunological properties of Newcastle disease virus-like particles containing the respiratory syncytial virus F and G proteins. J Virol 85(1):366–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medoff BD et al (2002) IFN-gamma-inducible protein 10 (CXCL10) contributes to airway hyperreactivity and airway inflammation in a mouse model of asthma. J Immunol 168(10):5278–5286

    CAS  PubMed  Google Scholar 

  • Mellow TE et al (2004) The effect of respiratory synctial virus on chemokine release by differentiated airway epithelium. Exp Lung Res 30(1):43–57

    Article  CAS  PubMed  Google Scholar 

  • Miller AL et al (2003) CXCR2 regulates respiratory syncytial virus-induced airway hyperreactivity and mucus overproduction. J Immunol 170(6):3348–3356

    CAS  PubMed  Google Scholar 

  • Mukherjee S et al (2009) Regulation of T cell activation by Notch ligand, DLL4, promotes IL-17 production and Rorc activation. J Immunol 182(12):7381–7388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114(Pt 20):3619–3629

    CAS  PubMed  Google Scholar 

  • Murawski MR et al (2009) Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J Virol 83(3):1492–1500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Numata M et al (2010) Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc Natl Acad Sci U S A 107(1):320–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paramore LC, Mahadevia PJ, Piedra PA (2010) Outpatient RSV lower respiratory infections among high-risk infants and other pediatric populations. Pediatr Pulmonol 45(6):578–584

    PubMed  Google Scholar 

  • Rallabhandi P et al (2006) Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol 177(1):322–332

    CAS  PubMed  Google Scholar 

  • Rudd BD et al (2005) Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J Virol 79(6):3350–3357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudd BD et al (2006) Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J Immunol 176(3):1937–1942

    CAS  PubMed  Google Scholar 

  • Sabbah A et al (2009) Activation of innate immune antiviral responses by Nod2. Nat Immunol 10(10):1073–1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scagnolari C et al (2009) Gene expression of nucleic acid-sensing pattern recognition receptors in children hospitalized for respiratory syncytial virus-associated acute bronchiolitis. Clin Vaccine Immunol 16(6):816–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaller MA et al (2007) Notch ligand delta-like 4 regulates disease pathogenesis during respiratory viral infections by modulating Th2 cytokines. J Exp Med 204(12):2925–2934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swanson MS (2006) Autophagy: eating for good health. J Immunol 177(8):4945–4951

    CAS  PubMed  Google Scholar 

  • Tal G et al (2004) Association between common toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis 189(11):2057–2063

    Article  CAS  PubMed  Google Scholar 

  • Tayyari F et al (2011) Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med 17(9):1132–1135

    Article  CAS  PubMed  Google Scholar 

  • Tu L et al (2005) Notch signaling is an important regulator of type 2 immunity. J Exp Med 202(8):1037–1042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van de Wetering JK, van Golde LM, Batenburg JJ (2004) Collectins: players of the innate immune system. Eur J Biochem 271(7):1229–1249

    Article  PubMed  Google Scholar 

  • Welliver RC (2003) Respiratory syncytial virus and other respiratory viruses. Pediatr Infect Dis J 22(2 Suppl):S6–S10; discussion S10-2

    Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Zhang W et al (2010) Vaccination to induce antibodies blocking the CX3C-CX3CR1 interaction of respiratory syncytial virus G protein reduces pulmonary inflammation and virus replication in mice. J Virol 84(2):1148–1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou D et al (2005) Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22(5):571–581

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas W. Lukacs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukherjee, S., Lukacs, N.W. (2013). Innate Immune Responses to Respiratory Syncytial Virus Infection. In: Anderson, L., Graham, B. (eds) Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Current Topics in Microbiology and Immunology, vol 372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38919-1_7

Download citation

Publish with us

Policies and ethics