Skip to main content

Locating All Maximal Approximate Runs in a String

  • Conference paper
Combinatorial Pattern Matching (CPM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7922))

Included in the following conference series:

Abstract

An exact run in a string, T, is a non-empty substring of T that can be divided into adjacent non-overlapping identical substrings. Finding exact runs in strings is an important problem and therefore a well studied one in the strings community. For a given string T of length n, finding all maximal exact runs in the string can be done in O(n logn) time or O(n) time on integer alphabets. In this paper, we investigate the maximal approximate runs problem: for a given string T and a number k, find every non-empty substring T′ of T such that changing at most k letters in T′ transforms it into a maximal exact run in T. We present an \(O(nk^2 \log k \log \frac{n}{k})\) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crochemore, M.: An optimal algorithm for computing the repetitions in a word. Inf. Process. Lett. 12, 244–250 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apostolico, A., Preparata, F.P.: Optimal off-line detection of repetitions in a string. Theor. Comput. Sci. 22, 297–315 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Main, M.G., Lorentz, R.J.: An o(n log n) algorithm for finding all repetitions in a string. J. Algorithms 5, 422–432 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kosaraju, S.R.: Computation of squares in a string (preliminary version). In: Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807, pp. 146–150. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  5. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the tandem repeats in a string. J. Comput. Syst. Sci. 69, 525–546 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a fibonacci string. Theor. Comput. Sci. 172, 281–291 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Foundations of Computer Science, pp. 596–604 (1999)

    Google Scholar 

  8. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings, 392 pages. Cambridge University Press (2007)

    Google Scholar 

  9. Main, M.G.: Detecting leftmost maximal periodicities. Discrete Applied Mathematics 25, 145–153 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crochemore, M.: Recherche linéaire d’un carré dans un mot. C. R. Acad. Sc. Paris Sér. I Math. 296, 781–784 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Crochemore, M., Ilie, L.: Computing longest previous factors in linear time and applications. Information Processing Letters 106, 75–80 (2008), doi:10.1016/j.ipl.2007.10.006

    Article  MathSciNet  MATH  Google Scholar 

  12. Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approximate tandem repeats. Journal of Computational Biology 8, 1–18 (2001)

    Article  Google Scholar 

  13. Sim, J.S., Iliopoulos, C.S., Park, K., Smyth, W.F.: Approximate periods of strings. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 123–133. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Kolpakov, R.M., Kucherov, G.: Finding approximate repetitions under Hamming distance. Theor. Comput. Sci. 1, 135–156 (2003)

    Article  MathSciNet  Google Scholar 

  15. Amir, A., Eisenberg, E., Levy, A.: Approximate periodicity. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 25–36. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Parikh, R.J.: On context-free languages. Journal of the ACM 13, 570–581 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching. Journal of Algorithms 10, 157–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Galil, Z., Giancarlo, R.: Improved string matching with k mismatches. SIGACT News 17, 52–54 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amit, M., Crochemore, M., Landau, G.M. (2013). Locating All Maximal Approximate Runs in a String. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38905-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38904-7

  • Online ISBN: 978-3-642-38905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics