Effect of Fibre Orientation Optimisation in an Electromechanical Model of Left Ventricular Contraction in Rat

  • Valentina Carapella
  • Rafel Bordas
  • Pras Pathmanathan
  • Jurgen E. Schneider
  • Peter Kohl
  • Kevin Burrage
  • Vicente Grau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


Subject-specific, or personalised, modelling is one of the main targets in current cardiac modelling research. The aim of this study is to assess the improvement in predictive power gained by introducing subject-specific fibre models within an electromechanical model of left ventricular contraction in rat. A quantitative comparison of a series of global rule-based fibre models with an image-based locally optimised fibre model was performed. Our results show small difference in the predicted values of ejection fraction, wall thickening and base-to-apex shortening between the fibre models considered. In comparison, much larger differences appear between predicted values and those measured in experimental images. Further study of the constitutive behaviour and architecture of cardiac tissue is required before electromechanical models can fully benefit from the introduction of subject-specific fibres. Additionally, our study shows that, in the current model, an orthotropic description of the tissue is preferable to a transversely isotropic one, for the metrics considered.


Ejection Fraction Helix Angle Fibre Model Left Ventricular Contraction Fibre Optimisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguado-Sierra, J., et al.: Patient-specific modeling of dyssynchronous heart failure: a case study. Prog. Biophys. Mol. Biol. 107(1), 147–155 (2011)CrossRefGoogle Scholar
  2. 2.
    Cerqueira, M., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4), 539–542 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Daire, J., et al.: Cine and tagged cardiovascular magnetic resonance imaging in normal rat at 1.5T: a rest and stress study. J. Cardiov. Magn. Reson. 10, 1–10 (2008)CrossRefGoogle Scholar
  4. 4.
    Geerts, L., et al.: Towards Patient specific models of cardiac mechanics: a sensitivity study. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds.) FIMH 2003. LNCS, vol. 2674, pp. 81–90. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Hales, P.W., et al.: Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. Prog. Biophys. Mol. Biol. 110(2-3), 319–330 (2012)CrossRefGoogle Scholar
  6. 6.
    Karadag, I.E., et al.: Regionally optimised mathematical models of cardiac myocyte orientation in rat hearts. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 294–301. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Kerckhoffs, R., et al.: Homogeneity of Cardiac Contraction Despite Physiological Asynchrony of Depolarization:A Model Study. Ann. Biomed. Eng. 31, 536–547 (2003)CrossRefGoogle Scholar
  8. 8.
    LeGrice, I., et al.: Laminar structure of the heart: a mathematical model. Am. J. Physiol.-Heart C 272(5), H2466–H2476 (1997)Google Scholar
  9. 9.
    Lombaert, H., et al.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans. Med. Img. 31(7), 1436–1447 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Neal, M., et al.: Current progress in patient-specific modeling. Brief. Bioinform. 2(1), 111–126 (2009)Google Scholar
  11. 11.
    Pathmanathan, P., et al.: A Numerical Method for Cardiac Mechanoelectric Simulations. Ann. Biomed. Eng. 37(5), 860–873 (2009)CrossRefGoogle Scholar
  12. 12.
    Pitt-Francis, J., et al.: Chaste: A test-driven approach to software development for biological modelling. Comput. Phys. Commun. 180(12), 2452–2471 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Streeter, D.D., et al.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24, 339–347 (1969)CrossRefGoogle Scholar
  14. 14.
    Usyk, T., et al.: Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle. J. Elasticity 61, 143–164 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Vadakkumpadan, F., et al.: Image-based models of cardiac structure in health and disease. WIREs Syst. Biol. Med. 2(4), 489–506 (2010)CrossRefGoogle Scholar
  16. 16.
    Wang, L., et al.: Mathematical model of the neonatal mouse ventricular action potential. Am. J. Physiol.-Heart C 294(6), H2565–H2575 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valentina Carapella
    • 1
  • Rafel Bordas
    • 1
  • Pras Pathmanathan
    • 1
  • Jurgen E. Schneider
    • 2
  • Peter Kohl
    • 1
    • 3
  • Kevin Burrage
    • 1
  • Vicente Grau
    • 1
    • 4
  1. 1.Department of Computer ScienceUniversity of OxfordUK
  2. 2.Department of Cardiovascular MedicineUniversity of OxfordUK
  3. 3.National Heart and Lung InstituteImperial College LondonUK
  4. 4.Department of Engineering Science and Oxford e-Research CentreUniversity of OxfordUK

Personalised recommendations