The Effect of Active Cross-Fiber Stress on Shear-Induced Myofiber Reorientation

  • Marieke Pluijmert
  • Peter Bovendeerd
  • Wilco Kroon
  • Tammo Delhaas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


It has been hypothesized that myofiber orientation adapts to achieve a preferred mechanical loading state. To test this hypothesis, a model has been proposed in which myofiber orientation adapts in a response to fiber cross-fiber shear. However, the model lacked active cross-fiber stress that significantly reduces shear amplitudes, according to models of left ventricular (LV) mechanics. Therefore, we included generation of active stress perpendicular to the myofiber direction in an LV mechanics model with shear-induced myofiber reorientation. We tested the effect on fiber orientation, global and local LV function, and shear deformation. The developed pattern of the transverse component in myofiber orientation was similar with and without active cross-fiber stress. Angles of the transverse component were smaller with active cross-fiber stress. In both cases, global and local function increased during restructuring of the LV wall. Amplitudes of circumferential-radial shear strain were decreased after reorientation in both cases, and predicted and measured circumferential-radial shear strain matched better when active cross-fiber stress was included.


Shear Strain Transverse Component Heart Circ Helix Angle Rigid Body Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bovendeerd, P., Arts, T., Huyghe, J., van Campen, D., Reneman, R.: Dependency of local left ventricular wall mechanics on myocardial myofiber orientation: a model study. J. Biomech. 25, 1129–1135 (1992)CrossRefGoogle Scholar
  2. 2.
    Guccione, J., Costa, K., McCulloch, A.: Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 28(10), 1167–1177 (1995)CrossRefGoogle Scholar
  3. 3.
    Kerckhoffs, R., Bovendeerd, P., Kotte, J., Prinzen, F., Smits, K., Arts, T.: Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. of Biom. Engineering 31, 536–547 (2003)CrossRefGoogle Scholar
  4. 4.
    Nash, M.P., Hunter, P.J.: Computational mechanics of the heart. J. Elasticity 61, 113–141 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Sermesant, M., Rhode, K., Sanchez-Ortiz, G.I., Camara, O., Andriantsimiavona, R., Hegde, S., Rueckert, D., Lambiase, P., Bucknall, C., Rosenthal, E., Delingette, H., Hill, D.L.G., Ayache, N., Razavi, R.: Simulation of cardiac pathologies using an electromechanical biventricular model and xmr interventional imaging. Med. Image Anal. 9(5), 467–480 (2005)CrossRefGoogle Scholar
  6. 6.
    Usyk, T.P., Mazhari, R., McCulloch, A.D.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61, 143–164 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bovendeerd, P.H.M., Kroon, W., Delhaas, T.: Determinants of left ventricular shear strain. Am. J. Physiol. - Heart Circ. Physiol. 297, H1058–H1068 (2009)Google Scholar
  8. 8.
    Ashikaga, H., Omens, J.H., Ingels Jr., N.B., Covell, J.W.: Transmural mechanics at left ventricular epicardial pacing site. Am. J. Physiol. - Heart Circ. Physiol. 286, H2401–H2407 (2004)Google Scholar
  9. 9.
    Moore, C.C., H, L.O.C., McVeigh, E.R., Zerhouni, E.A.: Three-dimensional systolic strain patterns in the normal human left ventricle: Characterization with tagging mr imaging. Radiology 214, 453–466 (2000)Google Scholar
  10. 10.
    Omens, J.H., May, K.D., McCulloch, A.D.: Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am. J. Physiol. 261(3 pt. 2), H918–H928 (1991)Google Scholar
  11. 11.
    Ubbink, S.W.J., Bovendeerd, P.H.M., Delhaas, T., Arts, T., Van de Vosse, F.N.: Towards model-based analysis of cardiac mr tagging data: Relation between left ventricular shear strain and myofiber orientation. Med. Imag. Anal. 10, 623–641 (2006)CrossRefGoogle Scholar
  12. 12.
    Arts, T., Prinzen, F.W., Snoeckx, L.H., Rijcken, J.M., Reneman, R.S.: Adaptation of cardiac structure by mechanical feedback in the environment of the cell: a model study. Biophysical Journal 66, 953–961 (1994)CrossRefGoogle Scholar
  13. 13.
    Kroon, W., Delhaas, T., Arts, T., Bovendeerd, P.: Computational analysis of the myocardial structure: Adaptation of myofiber orientations through deformation in three dimensions. Med. Imag. Anal. 13, 346–353 (2009)CrossRefGoogle Scholar
  14. 14.
    Lin, D., Yin, F.C.: A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120(4), 504–517 (1998)CrossRefGoogle Scholar
  15. 15.
    Waldman, L.K., Nosan, D., Villarreal, F., Covell, J.W.: Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res. 63, 550–562 (1988)CrossRefGoogle Scholar
  16. 16.
    Pluijmert, M., Kroon, W., Rossi, A.C., Bovendeerd, P.H.M., Delhaas, T.: Why sit works: normal function despite typical myofiber pattern in situs inversus totalis (sit) hearts derived by shear-induced myofiber reorientation. PLoS. Comput. Biol. 8(7), e1002611 (2012)Google Scholar
  17. 17.
    Ashikaga, H., Criscione, J.C., Omens, J.H., Covell, J.W., Ingels Jr., N.B.: Transmural left ventricular mechanics underlying torsional recoil during relaxation. Am. J. Physiol. - Heart Circ. Physiol. 286, H640–H647 (2004)Google Scholar
  18. 18.
    Rodriguez, E.K., Omens, J.H., Waldman, L.K., McCulloch, A.D.: Effect of residual stress on transmural sarcomere length distributions in rat left ventricle. Am. J. Physiol. - Heart Circ. Physiol. 264, H1048–H1056 (1993)Google Scholar
  19. 19.
    Dokos, S., Smaill, B.H., Young, A.A., LeGrice, I.J.: Shear properties of passive ventricular myocardium. Am. J. Physiol. 283, H2650–H2659 (2002)Google Scholar
  20. 20.
    Caulfield, J., Borg, T.: The collagen network of the heart. Lab. Invest. 40, 364–372 (1979)Google Scholar
  21. 21.
    LeGrice, I.J., Takayama, Y., Covell, J.W.: Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. 77(1), 182–193 (1995)CrossRefGoogle Scholar
  22. 22.
    Omens, J.H., Usyk, T.P., Li, Z., McCulloch, A.D.: Muscle lim protein deficiency leads to alterations in passive ventricular mechanics. Am. J. Physiol. Heart Circ. Physiol. 282(2), H680–H687 (2002)Google Scholar
  23. 23.
    Schmid, H., O’Callaghan, P., Nash, M.P., Lin, W., LeGrice, I.J., Smaill, B.H., Young, A.A., Hunter, P.J.: Myocardial material parameter estimation: a non-homogeneous finite element study from simple shear tests. Biomech. Model. Mechanobiol. 7(3), 161–173 (2008)CrossRefGoogle Scholar
  24. 24.
    Arts, T., Costa, K.D., Covell, J.W., McCulloch, A.D.: Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am. J. Physiol. Heart Circ. Physiol. 280(5), H2222–H2229 (2001)Google Scholar
  25. 25.
    Gilbert, S., Benson, A., Li, P., Van Holden, A.: Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur. J. Cardiothorac. Surg. 32, 231–249 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marieke Pluijmert
    • 1
    • 2
  • Peter Bovendeerd
    • 2
  • Wilco Kroon
    • 3
  • Tammo Delhaas
    • 1
  1. 1.Department of Biomedical Engineering/Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
  2. 2.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Institute of Computational ScienceUniversity of LuganoLuganoSwitzerland

Personalised recommendations