A High-Fidelity and Micro-anatomically Accurate 3D Finite Element Model for Simulations of Functional Mitral Valve

  • Chung-Hao Lee
  • Pim J. A. Oomen
  • Jean Pierre Rabbah
  • Ajit Yoganathan
  • Robert C. Gorman
  • Joseph H. GormanIII
  • Rouzbeh Amini
  • Michael S. Sacks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


Promising mitral valve (MV) repair concepts include leaflet augmentation and saddle shaped annuloplasty, and recent long-term studies have indicated that excessive tissue stress and the resulting strain-induced tissue failure are important etiologic factors leading to the recurrence of significant MR after repair. In the present work, we are aiming at developing a high-fidelity computational framework, incorporating detailed collagen fiber architecture, accurate constitutive models for soft valve tissues, and micro-anatomically accurate valvular geometry, for simulations of functional mitral valves which allows us to investigate the organ-level mechanical responses due to physiological loadings. This computational tools also provides a means, with some extension in the future, to help the understanding of the connection between the repair-induced altered stresses/strains and valve functions, and ultimately to aid in the optimal design of MV repair procedure with better performance and durability.


Mitral Valve Mitral Regurgitation Important Etiologic Factor Mitral Valve Apparatus Small Angle Light Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpentier, A.: Cardiac valve surgery–the French correctoin. J. Thorac. Cardiovasc. Surg. 86(3), 323–337 (1983)Google Scholar
  2. 2.
    Goldsmith, I.R., Lip, G.Y., Patel, R.L.: A prospective study of changes in the quality of life of patients following mitral valve repair and replacement. Eur. J. Cardiothorac. Surg. 20(5), 949–955 (2001)CrossRefGoogle Scholar
  3. 3.
    Driessen, N.J.B., Boerboom, R.A., Huyghe, J.M., Bouten, C.V., Baaijens, F.P.: Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J. Biomech. Eng. 125(4), 549–557 (2003)CrossRefGoogle Scholar
  4. 4.
    Boerboom, R., Driessen, N.J.B., Bouten, C.C., Huyghe, J., Baaijens, F.T.: Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve. Ann. Biomed. Eng. 31(9), 1040–1053 (2003)CrossRefGoogle Scholar
  5. 5.
    Kunzelman, K.S., Cochran, R.P., Chuong, C., Ring, W.S., Verrier, E.D., Eberhart, R.D.: Finite element analysis of the mitral valve. J. Heart Valve Dis. 2(3), 326–340 (1993)Google Scholar
  6. 6.
    Kunzelman, K.S., Reimink, M.S., Cochran, R.P.: Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J. Heart Valve Dis. 7(1), 108–116 (1998)Google Scholar
  7. 7.
    Einstein, D.R., Kunzelman, K.S., Reinhall, P.G., Nicosia, M.A., Cochran, R.P.: The relationship of normal and abnormal microstructural proliferation to the mitral valve closure sound. J. Biomech. Eng. 127(1), 134–147 (2005)CrossRefGoogle Scholar
  8. 8.
    Sacks, M.S., Smith, D.B., Hiester, E.D.: The aortic valve microstructure: Effects of transvalvular pressure. J. Biomed. Mater. Res. 41(1), 131–141 (1998)CrossRefGoogle Scholar
  9. 9.
    Cochran, R.P., Kunzelman, K.S., Chuong, C.J., Sacks, M.S., Eberhard, R.C.: Nondestructive analysis of mitral valve collagen fiber orientation. ASAIO Trans. 37(3), M447–M448 (1991)Google Scholar
  10. 10.
    Sacks, M.S.: Incorporation of experimentally-derive fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125(2), 280–287 (2003)CrossRefGoogle Scholar
  11. 11.
    Gorman, J.H., Gupta, K.B., Streicher, J.T., Gorman, R.C., Jackson, B.M., Ratcliffe, M.B., Bogen, D.K., Edmunds Jr., L.H.: Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112(3), 712–726 (1996)CrossRefGoogle Scholar
  12. 12.
    Grashow, J.S., Yoganathan, A.P., Sacks, M.S.: Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2), 315–325 (2006)CrossRefGoogle Scholar
  13. 13.
    He, Z., Ritchie, J., Grashow, J.S., Sacks, M.S., Yoganathan, A.P.: In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. 127(3), 504–511 (2005)CrossRefGoogle Scholar
  14. 14.
    Kunzelmann, K.S., Cochran, R.P.: Mechanical properties of basal and marginal mitral valve chordae tendineae. ASAIO Trans. 36, M405–M408 (1990)Google Scholar
  15. 15.
    Kunzelman, K.S., Einstein, D.R., Cochran, R.P.: Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Phil. Trans. Soc. B 362, 1393–1406 (2007)CrossRefGoogle Scholar
  16. 16.
    Sun, W., Abad, A., Sacks, M.S.: Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech. Eng. 127, 1–9 (2005)CrossRefGoogle Scholar
  17. 17.
    Prot, V., Haaverstad, R., Skallerud, B.: Finte element analysis of the mitral apparatus: annulus shape effect and chordae force distribution. Biomech. Model Mechanobiol. 8, 43–55 (2009)CrossRefGoogle Scholar
  18. 18.
    Lau, K.D., Diaz, V., Scambler, P., Burriesci, G.: Mitral valve dynamics in structure and fluid-structure interaction models. Med. Eng. Phys. 32, 1057–1064 (2010)CrossRefGoogle Scholar
  19. 19.
    Wang, Q., Sun, W.: Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Annals Biomed. Eng. (2012), doi:10.1007/s10439-012-0620-6Google Scholar
  20. 20.
    Aggarwal, A., Aguilar, V.S., Lee, C.H., Gorman, J.H., Gorman, R.C., Sacks, M.S.: Spline based microstructural mapping for soft biological tissues: application to aortic valves. In: 11th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chung-Hao Lee
    • 1
  • Pim J. A. Oomen
    • 2
  • Jean Pierre Rabbah
    • 3
  • Ajit Yoganathan
    • 3
  • Robert C. Gorman
    • 4
  • Joseph H. GormanIII
    • 4
  • Rouzbeh Amini
    • 5
  • Michael S. Sacks
    • 1
  1. 1.The University of Texas at AustinAustinUSA
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Georgia Institute of TechnologyAtlantaUSA
  4. 4.University of PennsylvaniaPhiladelphiaUSA
  5. 5.University of PittsburghPittsburghUSA

Personalised recommendations