Skip to main content

A High-Fidelity and Micro-anatomically Accurate 3D Finite Element Model for Simulations of Functional Mitral Valve

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2013)

Abstract

Promising mitral valve (MV) repair concepts include leaflet augmentation and saddle shaped annuloplasty, and recent long-term studies have indicated that excessive tissue stress and the resulting strain-induced tissue failure are important etiologic factors leading to the recurrence of significant MR after repair. In the present work, we are aiming at developing a high-fidelity computational framework, incorporating detailed collagen fiber architecture, accurate constitutive models for soft valve tissues, and micro-anatomically accurate valvular geometry, for simulations of functional mitral valves which allows us to investigate the organ-level mechanical responses due to physiological loadings. This computational tools also provides a means, with some extension in the future, to help the understanding of the connection between the repair-induced altered stresses/strains and valve functions, and ultimately to aid in the optimal design of MV repair procedure with better performance and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpentier, A.: Cardiac valve surgery–the French correctoin. J. Thorac. Cardiovasc. Surg. 86(3), 323–337 (1983)

    Google Scholar 

  2. Goldsmith, I.R., Lip, G.Y., Patel, R.L.: A prospective study of changes in the quality of life of patients following mitral valve repair and replacement. Eur. J. Cardiothorac. Surg. 20(5), 949–955 (2001)

    Article  Google Scholar 

  3. Driessen, N.J.B., Boerboom, R.A., Huyghe, J.M., Bouten, C.V., Baaijens, F.P.: Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J. Biomech. Eng. 125(4), 549–557 (2003)

    Article  Google Scholar 

  4. Boerboom, R., Driessen, N.J.B., Bouten, C.C., Huyghe, J., Baaijens, F.T.: Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve. Ann. Biomed. Eng. 31(9), 1040–1053 (2003)

    Article  Google Scholar 

  5. Kunzelman, K.S., Cochran, R.P., Chuong, C., Ring, W.S., Verrier, E.D., Eberhart, R.D.: Finite element analysis of the mitral valve. J. Heart Valve Dis. 2(3), 326–340 (1993)

    Google Scholar 

  6. Kunzelman, K.S., Reimink, M.S., Cochran, R.P.: Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J. Heart Valve Dis. 7(1), 108–116 (1998)

    Google Scholar 

  7. Einstein, D.R., Kunzelman, K.S., Reinhall, P.G., Nicosia, M.A., Cochran, R.P.: The relationship of normal and abnormal microstructural proliferation to the mitral valve closure sound. J. Biomech. Eng. 127(1), 134–147 (2005)

    Article  Google Scholar 

  8. Sacks, M.S., Smith, D.B., Hiester, E.D.: The aortic valve microstructure: Effects of transvalvular pressure. J. Biomed. Mater. Res. 41(1), 131–141 (1998)

    Article  Google Scholar 

  9. Cochran, R.P., Kunzelman, K.S., Chuong, C.J., Sacks, M.S., Eberhard, R.C.: Nondestructive analysis of mitral valve collagen fiber orientation. ASAIO Trans. 37(3), M447–M448 (1991)

    Google Scholar 

  10. Sacks, M.S.: Incorporation of experimentally-derive fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125(2), 280–287 (2003)

    Article  Google Scholar 

  11. Gorman, J.H., Gupta, K.B., Streicher, J.T., Gorman, R.C., Jackson, B.M., Ratcliffe, M.B., Bogen, D.K., Edmunds Jr., L.H.: Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112(3), 712–726 (1996)

    Article  Google Scholar 

  12. Grashow, J.S., Yoganathan, A.P., Sacks, M.S.: Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2), 315–325 (2006)

    Article  Google Scholar 

  13. He, Z., Ritchie, J., Grashow, J.S., Sacks, M.S., Yoganathan, A.P.: In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. 127(3), 504–511 (2005)

    Article  Google Scholar 

  14. Kunzelmann, K.S., Cochran, R.P.: Mechanical properties of basal and marginal mitral valve chordae tendineae. ASAIO Trans. 36, M405–M408 (1990)

    Google Scholar 

  15. Kunzelman, K.S., Einstein, D.R., Cochran, R.P.: Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Phil. Trans. Soc. B 362, 1393–1406 (2007)

    Article  Google Scholar 

  16. Sun, W., Abad, A., Sacks, M.S.: Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech. Eng. 127, 1–9 (2005)

    Article  Google Scholar 

  17. Prot, V., Haaverstad, R., Skallerud, B.: Finte element analysis of the mitral apparatus: annulus shape effect and chordae force distribution. Biomech. Model Mechanobiol. 8, 43–55 (2009)

    Article  Google Scholar 

  18. Lau, K.D., Diaz, V., Scambler, P., Burriesci, G.: Mitral valve dynamics in structure and fluid-structure interaction models. Med. Eng. Phys. 32, 1057–1064 (2010)

    Article  Google Scholar 

  19. Wang, Q., Sun, W.: Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Annals Biomed. Eng. (2012), doi:10.1007/s10439-012-0620-6

    Google Scholar 

  20. Aggarwal, A., Aguilar, V.S., Lee, C.H., Gorman, J.H., Gorman, R.C., Sacks, M.S.: Spline based microstructural mapping for soft biological tissues: application to aortic valves. In: 11th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, CH. et al. (2013). A High-Fidelity and Micro-anatomically Accurate 3D Finite Element Model for Simulations of Functional Mitral Valve. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics