Advertisement

Flow Analysis in Cardiac Chambers Combining Phase Contrast, 3D Tagged and Cine MRI

  • Radomir Chabiniok
  • James Wong
  • Daniel Giese
  • David Nordsletten
  • Wenzhe Shi
  • Gerald Greil
  • Daniel Rueckert
  • Reza Razavi
  • Tobias Schaeffter
  • Nic Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

Accelerated methods for acquiring phase contrast (PC) MRI allow the acquisition of 4D flow data of the whole heart in clinically acceptable times. These datasets are becoming interesting both for clinicians – to better stratify diagnosis – and in the modeling community – to constrain patient-specific models. One of the difficulties related to PC data is a limited accuracy in the regions of low flow such as close to the myocardial wall, where the velocity field may even produce observed blood motion across the endocardial surface. To address this issue we propose to constrain the motion of blood in cavity during the analysis by using cine MRI and replacing the PC velocity in the peri-myocardial zone by neighboring tissue velocity obtained by analysis of 3D tagged MRI. We demonstrate the effect of these corrections on 2 healthy volunteer datasets and on one patient with a hypoplastic left ventricle.

Keywords

Cardiovascular Magnetic Resonance Phase Contrast Endocardial Surface Phase Contrast Velocity Hypoplastic Left Ventricle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baerentzen, J., Aanaes, H.: Signed distance computation using the angle weighted pseudo-normal. IEEE Trans. Visual. Comput. Graph. 11, 243–253 (2005)CrossRefGoogle Scholar
  2. 2.
    Busch, J., Giese, D., Wissmann, L., Kozerke, S.: Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements. Magn. Reson. Med. 69, 200–210 (2013)CrossRefGoogle Scholar
  3. 3.
    Carlsson, M., Heiberg, E., Toger, J., Arheden, H.: Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 302, H893–H900 (2012)CrossRefGoogle Scholar
  4. 4.
    Chapelle, D., Fragu, M., Mallet, V., Moireau, P.: Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart. Med. Biol. Eng. Comput., 1–12 (in press)Google Scholar
  5. 5.
    Conturo, T.E., Smith, G.D.: Signal-to-noise in phase angle reconstruction: Dynamic range extension using phase reference offsets. Magn. Reson. Med. 15, 420–437 (1990)CrossRefGoogle Scholar
  6. 6.
    Darmofal, D.L., Haimes, R.: An analysis of 3D particle path integration algorithms. Journal of Computational Physics 123, 182–195 (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Elia, M.D., Perego, M., Veneziani, A.: A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics. Journal of Scientific Computing, 1–20 (2011)Google Scholar
  8. 8.
    Eriksson, J., Carlhäll, C.J., Dyverfeldt, P., Engvall, J., Bolger, A.F., Ebbers, T.: Semi-automatic quantification of 4D left ventricular blood flow. Journal of Cardiovascular Magnetic Resonance 12, 1–10 (2010)CrossRefGoogle Scholar
  9. 9.
    Giese, D., Schaeffter, T., Kozerke, S.: Highly undersampled phase-contrast flow measurements using compartment-based k-t principal component analysis. Magn. Reson. Med. 69, 434–443 (2013)CrossRefGoogle Scholar
  10. 10.
    Jung, B.A., Hennig, J., Scheffler, K.: Single-breathhold 3D-trueFISP cine cardiac imaging. Magn. Reson. Med. 48(5), 921–925 (2002)CrossRefGoogle Scholar
  11. 11.
    Knobloch, V., Boesiger, P., Kozerke, S.: Sparsity transform k-t principal component analysis for accelerating cine three-dimensional flow measurements. Magn. Reson. Med. (in press)Google Scholar
  12. 12.
    Markl, M., Kilner, P.J., Ebbers, T.: Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 13, 1–22 (2011)CrossRefGoogle Scholar
  13. 13.
    McCormick, M., Nordsletten, D.A., Kay, D., Smith, N.P.: Simulating left ventricular fluid-solid mechanics through the cardiac cycle under LVAD support. Journal of Computational Physics, 1–17 (in press)Google Scholar
  14. 14.
    Moireau, P., Bertoglio, C., Xiao, N., Figueroa, C., Taylor, C., Chapelle, D., Gerbeau, J.-F.: Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomechanics and Modeling in Mechanobiology, 1–22 (in press)Google Scholar
  15. 15.
    Nordsletten, D., Kay, D., Smith, N.: A non-conforming monolithic finite element method for problems of coupled mechanics. Journal of Computational Physics 229, 7571–7593 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Pedersen, H., Kozerke, S., Ringgaard, S., Nehrke, K., Kim, W.Y.: k-t PCA: Temporally constrained k-t BLAST reconstruction using principal component analysis. Magn. Reson. Med. 62, 706–716 (2009)CrossRefGoogle Scholar
  17. 17.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  18. 18.
    Rutz, A.K., Ryf, S., Plein, S., Boesiger, P., Kozerke, S.: Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magn. Reson. Med. 59, 755–763 (2008)CrossRefGoogle Scholar
  19. 19.
    Schnabel, J.A., Rueckert, D., Quist, M., Blackall, J.M., Castellano-Smith, A.D., Hartkens, T., Penney, G.P., Hall, W.A., Liu, H., Truwit, C.L., Gerritsen, F.A., Hill, D.L.G., Hawkes, D.J.: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 573–581. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Shi, W., Zhuang, X., Wang, H., Duckett, S., Luong, D.V.N., Tobon-Gomez, C., Tung, K., Edwards, P., Rhode, K., Razavi, R., Ourselin, S., Rueckert, D.: A comprehensive cardiac motion estimation framework using both untagged and 3D tagged MR images based on non-rigid registration. IEEE Trans. Med. Imaging 31(6), 1263–1275 (2012)CrossRefGoogle Scholar
  21. 21.
    Simard, P.Y., Mailloux, G.E.: A projection operator for the restoration of divergence-free vector fields. IEEE Trans. Pattern Anal. Machine Intell. 10(2), 248–256 (1988)CrossRefGoogle Scholar
  22. 22.
    Stoeck, C.T., Manka, R., Boesiger, P., Kozerke, S.: Undersampled Cine 3D tagging for rapid assessment of cardiac motion. Journal of Cardiovascular Magnetic Resonance 14, 1–12 (2012)CrossRefGoogle Scholar
  23. 23.
    Toussaint, N., Mansi, T., Delingette, H., Ayache, N., Sermesant, M.: An integrated platform for dynamic cardiac simulation and image processing: Application to personalised tetralogy of Fallot simulation. In: Proc.of VCBM, Delft, NL (2008)Google Scholar
  24. 24.
    Wei, F., Westerdale, J., McMahon, E.M., Belohlavek, M., Heys, J.J.: Weighted least-squares finite element method for cardiac blood flow simulation with echocardiographic data. In: Computational and Mathematical Methods in Medicine, pp. 1–9 (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Radomir Chabiniok
    • 1
  • James Wong
    • 1
  • Daniel Giese
    • 1
  • David Nordsletten
    • 1
  • Wenzhe Shi
    • 2
  • Gerald Greil
    • 1
  • Daniel Rueckert
    • 2
  • Reza Razavi
    • 1
  • Tobias Schaeffter
    • 1
  • Nic Smith
    • 1
  1. 1.Division of Imaging Sciences & Biomedical EngineeringSt. Thomas’ Hospital, King’s College LondonUK
  2. 2.Department of ComputingImperial College LondonUK

Personalised recommendations