Advertisement

Variational Myocardial Tracking from Cine-MRI with Non-linear Regularization: Validation of Radial Displacements vs. Tagged-MRI

  • Viateur Tuyisenge
  • Adélaïde Albouy-Kissi
  • Laurent Sarry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

We present a new motion estimation approach for cardiac Magnetic Resonance Imaging (Cine-MRI) data from variational framework. The improved performance of this variational approach has been achieved by designing a new regularization term that properly handles motion discontinuities. This approach was applied to both synthetic and real data. The quantitative evaluation revealed that the results of proposed method on cine-MRI correlates with the results given by inTag, reference approach on tagged-MRI.

Keywords

Motion Estimation Cardiac Magnetic Resonance Image Radial Displacement Regularization Term Angular Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: ICCV (2007)Google Scholar
  2. 2.
    Zhang, Z., Song, X., Sahn, D.J.: Cardiac motion estimation from 3D echocardiography with spatiotemporal regularization. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 350–358. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)CrossRefGoogle Scholar
  4. 4.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Carranza-Herrezueloa, N., Bajo, A., Sroubek, F., Santamarta, C., Cristobal, G., Santos, A., Ledesma-Carbayo, M.J.: Motion estimation of tagged cardiac magnetic resonance images using variational techniques. Computerized Medical Imaging and Graphics 34, 514–522 (2010)CrossRefGoogle Scholar
  6. 6.
    Cohen, I.: Nonlinear variational method for optical flow computation. In: Proceedings of the 8th SCIA, pp. 523–630 (1993)Google Scholar
  7. 7.
    Deriche, R., Kornprobst, P., Aubert, G.: Optical-flow estimation while preserving its discontinuities: A variational approach. In: Asian Conference on Computer Vision, vol. 2, pp. 71–80 (1995)Google Scholar
  8. 8.
    Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  9. 9.
    Kima, Y., Martinez, A.M., Kaka, A.C.: Robust motion estimation under varying illumination. Image and Vision Computing 23, 365–375 (2005)CrossRefGoogle Scholar
  10. 10.
    Mansi, T., Peyrat, J.-M., Sermesant, M., Delingette, H., Blanc, J., Boudjemline, Y., Ayache, N.: Physically-constrained diffeomorphic demons for the estimation of 3D myocardium strain from cine-MRI. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 201–210. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Mitiche, A., Bouthemy, P.: Computation and analysis of image motion: A synopsis of current problems and methods. IJCV 19, 29–55 (1996)CrossRefGoogle Scholar
  12. 12.
    Nagel, H.H.: Constraints for the estimation of displacement vector fields from image sequences. In: Proc. Eighth Int. Joint Conf. on Artificial Intelligence, IJCAI, pp. 945–951 (1983)Google Scholar
  13. 13.
    Papademetris, X., Sinusas, A.J., Dione, D.P., Duncan, J.S.: Estimation of 3D left ventricular deformation from echocardiography. Medical Image Analysis 5, 17–28 (2001)CrossRefGoogle Scholar
  14. 14.
    Stiller, C., Konrad, J.: Estimating motion in image sequences. IEEE Signal Proc. Magazine 16, 70–91 (1999)CrossRefGoogle Scholar
  15. 15.
    Tschumperlé, D., Deriche, R.: Restauration d’images vectorielles par EDP. In: 12ème Congres RFIA, vol. 17, pp. 247–256 (2000)Google Scholar
  16. 16.
    Tuyisenge, V., Albouy-Kissi, A., Cassagnes, L., Coupez, E., Merlin, C., Windyga, P., Sarry, L.: Variational myocardial tracking from cine-MRI with non-linear regularization. In: Proc. of the 10th IEEE Int. Symposium on Biomedical Imaging 2013 (ISBI 2013), San Francisco, USA. IEEE (2013)Google Scholar
  17. 17.
    Weickert, J.: On discontinuity-preserving optical flow. In: Proc. Computer Vision and Mobile Robotics Workshop, pp. 115–122 (1998)Google Scholar
  18. 18.
    Weickert, J., Bruhn, A., Brox, T., Papenberg, N.: A survey on variational optic flow methods for small displacements. Mathematics in Industry 10, 103–136 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Viateur Tuyisenge
    • 1
  • Adélaïde Albouy-Kissi
    • 1
  • Laurent Sarry
    • 1
  1. 1.ISIT UMR 6284 UdA-CNRSClermont Université, Université d’ AuvergneClermont-FerrandFrance

Personalised recommendations